skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advance social information allows red crossbills ( Loxia curvirostra ) to better conserve body mass and intestinal mass during food stress
Animals prepare for fluctuations in resources through advance storage of energy, planned reduction in energy costs or by moving elsewhere. Unpredictable fluctuations in food, however, may be particularly challenging if animals cannot avoid negative impacts on body condition. Social information may help animals to cope with unpredictable resources if cues from individuals with low foraging success give advance warning about deteriorating conditions. This study investigates the impact of social information on behaviour and physiology of food-restricted captive red crossbills ( Loxia curvirostra ). Birds were restricted to two short feeding periods per day to simulate a decline in resources and were given social information from food-restricted neighbours either before (i.e. predictive) or during (i.e. parallel) the food-restriction period. Focal birds better conserved body mass during food restriction if social information was predictive of the decline in resources. Crossbills with predictive information ate more food, had larger intestinal mass and better conserved pectoral muscle size at the end of the restriction period compared to those with parallel social information. These data suggest that birds can use social information to alter behavioural and physiological responses during food shortage in ways that may confer an adaptive advantage for survival.  more » « less
Award ID(s):
1755227
PAR ID:
10329908
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1975
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Temperate winters can impose severe conditions on songbirds that threaten survival, including shorter days and often lower temperatures and food availability. One well-studied mechanism by which songbirds cope with such conditions is seasonal acclimatization of thermal metabolic traits, with strong evidence for both preparative and responsive changes in thermogenic capacity (i.e., the ability to generate heat) to low winter temperatures. However, a bird’s ability to cope with seasonal extremes or unpredictable events is likely dependent on a combination of behavioral and physiological traits that function to maintain allostatic balance. The ability to cope with reduced food availability may be an important component of organismal response to temperate winters in songbirds. Here, we compare responses to experimentally reduced food availability at different times of year in captive red crossbills (Loxia curvirostra) and pine siskins (Spinus pinus)—two species that cope with variable food resources and live in cold places—to investigate seasonal changes in the organismal response to food availability. Further, red crossbills are known to use social information to improve responses to reduced food availability, so we also examine whether the use of social information in this context varies seasonally in this species. We find that pine siskins and red crossbills lose less body mass during time-restricted feedings in late winter compared to summer, and that red crossbills further benefit from social information gathered from observing other food-restricted red crossbills in both seasons. Observed changes in body mass were only partially explained by seasonal differences in food intake. Our results demonstrate seasonal acclimation to food stress and social information use across seasons in a controlled captive environment and highlight the importance of considering diverse physiological systems (e.g., thermogenic, metabolic, digestive, etc.) to understand organismal responses to environmental challenges. 
    more » « less
  2. Social learning is a primary mechanism for information acquisition in social species. Despite many benefits, social learning may be disadvantageous when independent learning is more efficient. For example, searching independently may be more advantageous when food sources are ephemeral and unpredictable. Individual differences in cognitive abilities can also be expected to influence social information use. Specifically, better spatial memory can make a given environment more predictable for an individual by allowing it to better track food sources. We investigated how resident food-caching chickadees discovered multiple novel food sources in both harsher, less predictable high elevation and milder, more predictable low elevation winter environments. Chickadees at high elevation were faster at discovering multiple novel food sources and discovered more food sources than birds at low elevation. While birds at both elevations used social information, the contribution of social learning to food discovery was significantly lower at high elevation. At both elevations, chickadees with better spatial cognitive flexibility were slower at discovering food sources, likely because birds with lower spatial cognitive flexibility are worse at tracking natural resources and therefore spend more time exploring. Overall, our study supported the prediction that harsh environments should favour less reliance on social learning. 
    more » « less
  3. Abstract Animals that feed socially can sometimes better locate prey, often by transferring information about food that is patchy, dense, and temporally and spatially unpredictable. Information transfer is a potential benefit of living in breeding colonies where unsuccessful foragers can more readily locate successful ones and thereby improve feeding efficiency. Most studies on social foraging have been short term, and how long‐term environmental change affects both foraging strategies and the associated benefits of coloniality is generally unknown. In the colonial Cliff Swallow (Petrochelidon pyrrhonota), we examined how social foraging, information transfer, and feeding ecology changed over a 40‐year period in western Nebraska. Relative to the 1980s, Cliff Swallows in 2016–2022 were more likely to forage solitarily or in smaller groups, spent less time foraging, were more successful as solitaries, fed in more variable locations, and engaged less in information transfer at the colony site. The total mass of insects brought back to nestlings per parental visit declined over the study. The diversity of insect families captured increased over time, and some insect taxa dropped out of the diet, although the three most common insect families remained the same over the decades. Nestling Cliff Swallow body mass at 10 days of age and the number of nestlings surviving per nest declined more sharply with colony size in 2015–2022 than in 1984–1991 at sites where the confounding effects of ectoparasites were removed. Adult body mass during the provisioning of nestlings was lower in more recent years, but the change did not vary with colony size. The reason(s) for the reduction in social foraging and information transfer over time is unclear, but the consequence is that colonial nesting may no longer offer the same fitness advantages for Cliff Swallows as in the 1980s. The results illustrate the flexibility of foraging behavior and dynamic shifts in the potential selective pressures for group living. 
    more » « less
  4. Abstract Neophobia is a behavior characterized by a reluctance to approach novel objects. We measured neophobia in captive wild house sparrows (Passer domesticus) by comparing the time it took for hungry birds to approach their normal food dish compared to one that had been modified with a novel object. We tested the behavior of animals captured at different times of year to test for seasonal variation in neophobia. One group of birds tested in July approached their food dishes much more quickly than all other birds (a matter of seconds rather than minutes whether or not there was a novel object), a response that was not repeated in a subsequent July. When this possible outlier group was removed from the analysis, approach times to novel objects were not affected by season. However, animals captured and tested in October had a stronger motivation to feed (i.e., they approached unmodified food dishes faster) than birds captured at other times of the year. If we define “neophobia” as an increase in latency to approach a novel versus an unmodified food dish, then there is little evidence for underlying seasonal variation in risk assessment, although a general motivation to feed does show a seasonal pattern. 
    more » « less
  5. All foraging animals face a trade-off: how much time should they invest in exploitation of known resources versus exploration to discover new resources? For group-living central place foragers, this balance is challenging. Due to the nature of their movement patterns, exploration and exploitation are often mutually exclusive, while the availability of social information may discourage individuals from exploring. To examine these trade-offs, we GPS-tracked groups of greater spear-nosed bats (Phyllostomus hastatus) from three colonies on Isla Colón, Panamá. During the dry season, when these omnivores forage on the nectar of unpredictable balsa flowers, bats consistently travelled long distances to remote, colony-specific foraging areas, bypassing flowering trees closer to their roosts. They continued using these areas in the wet season, when feeding on a diverse, presumably ubiquitous diet, but also visited other, similarly distant foraging areas. Foraging areas were shared within but not always between colonies. Our longitudinal dataset suggests that bats from each colony invest in long-distance commutes to socially learned shared foraging areas, bypassing other available food patches. Rather than exploring nearby resources, these bats exploit colony-specific foraging locations that appear to be culturally transmitted. These results give insight into how social animals might diverge from optimal foraging. 
    more » « less