skip to main content

Search for: All records

Award ID contains: 1755227

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Animals prepare for fluctuations in resources through advance storage of energy, planned reduction in energy costs or by moving elsewhere. Unpredictable fluctuations in food, however, may be particularly challenging if animals cannot avoid negative impacts on body condition. Social information may help animals to cope with unpredictable resources if cues from individuals with low foraging success give advance warning about deteriorating conditions. This study investigates the impact of social information on behaviour and physiology of food-restricted captive red crossbills ( Loxia curvirostra ). Birds were restricted to two short feeding periods per day to simulate a decline in resources andmore »were given social information from food-restricted neighbours either before (i.e. predictive) or during (i.e. parallel) the food-restriction period. Focal birds better conserved body mass during food restriction if social information was predictive of the decline in resources. Crossbills with predictive information ate more food, had larger intestinal mass and better conserved pectoral muscle size at the end of the restriction period compared to those with parallel social information. These data suggest that birds can use social information to alter behavioural and physiological responses during food shortage in ways that may confer an adaptive advantage for survival.« less
    Free, publicly-accessible full text available May 25, 2023
  2. Physiological preparations for migration generally reflect migratory strategy. Migrant birds fuel long-distance flight primarily with lipids, but carrying excess fuel is costly; thus, the amount of fat deposited prior to departure often reflects the anticipated flight duration or distance between refueling bouts. Seasonal pre-migratory deposition of fat is well documented in regular seasonal migrants, but is less described for more facultative species. We analyze fat deposits of free-living birds across several taxa of facultative migrants in the songbird subfamily Carduelinae, including house finches ( Haemorhous mexicanus ), American goldfinches ( Spinus tristis ), pine siskins ( Spinus pinus ) andmore »four different North American ecotypes of red crossbills ( Loxia curvirostra ), to evaluate seasonal fat deposition during facultative migratory periods. Our data suggest that the extent of seasonal fat deposits corresponds with migratory tendency in these facultative taxa. Specifically, nomadic red crossbills with a seasonally predictable annual movement demonstrated relatively large seasonal fat deposits coincident with the migratory periods. In contrast, pine siskins, thought to be more variable in timing and initiation of nomadic movements, had smaller peaks in fat deposits during the migratory season, and the partial migrant American goldfinch and the resident house finch showed no peaks coincident with migratory periods. Within the red crossbills, those ecotypes that are closely associated with pine habitats showed larger peaks in fat deposits coincident with autumn migratory periods and had higher wing loading, whereas those ecotypes associated with spruces, Douglas-fir and hemlocks showed larger peaks coincident with spring migratory periods and lower wing loading. We conclude that population averages of fat deposits do reflect facultative migration strategies in these species, as well as the winter thermogenic challenges at the study locations. A difference in seasonal fattening and wing loading among red crossbill ecotypes is consistent with the possibility that they differ in their migratory biology, and we discuss these differences in light of crossbill reproductive schedules and phenologies of different conifer species.« less
    Free, publicly-accessible full text available June 29, 2022