skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1755227

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Temperate winters can impose severe conditions on songbirds that threaten survival, including shorter days and often lower temperatures and food availability. One well-studied mechanism by which songbirds cope with such conditions is seasonal acclimatization of thermal metabolic traits, with strong evidence for both preparative and responsive changes in thermogenic capacity (i.e., the ability to generate heat) to low winter temperatures. However, a bird’s ability to cope with seasonal extremes or unpredictable events is likely dependent on a combination of behavioral and physiological traits that function to maintain allostatic balance. The ability to cope with reduced food availability may be an important component of organismal response to temperate winters in songbirds. Here, we compare responses to experimentally reduced food availability at different times of year in captive red crossbills (Loxia curvirostra) and pine siskins (Spinus pinus)—two species that cope with variable food resources and live in cold places—to investigate seasonal changes in the organismal response to food availability. Further, red crossbills are known to use social information to improve responses to reduced food availability, so we also examine whether the use of social information in this context varies seasonally in this species. We find that pine siskins and red crossbills lose less body mass during time-restricted feedings in late winter compared to summer, and that red crossbills further benefit from social information gathered from observing other food-restricted red crossbills in both seasons. Observed changes in body mass were only partially explained by seasonal differences in food intake. Our results demonstrate seasonal acclimation to food stress and social information use across seasons in a controlled captive environment and highlight the importance of considering diverse physiological systems (e.g., thermogenic, metabolic, digestive, etc.) to understand organismal responses to environmental challenges. 
    more » « less
  2. Abstract Many animals rely on photoperiodic and non-photoperiodic environmental cues to gather information and appropriately time life-history stages across the annual cycle, such as reproduction, molt, and migration. Here, we experimentally demonstrate that the reproductive physiology, but not migratory behavior, of captive Pine Siskins (Spinus pinus) responds to both food and social cues during the spring migratory-breeding period. Pine Siskins are a nomadic finch with a highly flexible breeding schedule and, in the spring, free-living Pine Siskins can wander large geographic areas and opportunistically breed. To understand the importance of non-photoperiodic cues to the migratory-breeding transition, we maintained individually housed birds on either a standard or enriched diet in the presence of group-housed heterospecifics or conspecifics experiencing either the standard or enriched diet type. We measured body condition and reproductive development of all Pine Siskins and, among individually housed Pine Siskins, quantified nocturnal migratory restlessness. In group-housed birds, the enriched diet caused increases in body condition and, among females, promoted reproductive development. Among individually housed birds, female reproductive development differed between treatment groups, whereas male reproductive development did not. Specifically, individually housed females showed greater reproductive development when presented with conspecifics compared to heterospecifics. The highest rate of female reproductive development, however, was observed among individually housed females provided the enriched diet and maintained with group-housed conspecifics on an enriched diet. Changes in nocturnal migratory restlessness did not vary by treatment group or sex. By manipulating both the physical and social environment, this study demonstrates how multiple environmental cues can affect the timing of transitions between life-history stages with differential responses between sexes and between migratory and reproductive systems. 
    more » « less
  3. Animals prepare for fluctuations in resources through advance storage of energy, planned reduction in energy costs or by moving elsewhere. Unpredictable fluctuations in food, however, may be particularly challenging if animals cannot avoid negative impacts on body condition. Social information may help animals to cope with unpredictable resources if cues from individuals with low foraging success give advance warning about deteriorating conditions. This study investigates the impact of social information on behaviour and physiology of food-restricted captive red crossbills ( Loxia curvirostra ). Birds were restricted to two short feeding periods per day to simulate a decline in resources and were given social information from food-restricted neighbours either before (i.e. predictive) or during (i.e. parallel) the food-restriction period. Focal birds better conserved body mass during food restriction if social information was predictive of the decline in resources. Crossbills with predictive information ate more food, had larger intestinal mass and better conserved pectoral muscle size at the end of the restriction period compared to those with parallel social information. These data suggest that birds can use social information to alter behavioural and physiological responses during food shortage in ways that may confer an adaptive advantage for survival. 
    more » « less
  4. null (Ed.)
    Physiological preparations for migration generally reflect migratory strategy. Migrant birds fuel long-distance flight primarily with lipids, but carrying excess fuel is costly; thus, the amount of fat deposited prior to departure often reflects the anticipated flight duration or distance between refueling bouts. Seasonal pre-migratory deposition of fat is well documented in regular seasonal migrants, but is less described for more facultative species. We analyze fat deposits of free-living birds across several taxa of facultative migrants in the songbird subfamily Carduelinae, including house finches ( Haemorhous mexicanus ), American goldfinches ( Spinus tristis ), pine siskins ( Spinus pinus ) and four different North American ecotypes of red crossbills ( Loxia curvirostra ), to evaluate seasonal fat deposition during facultative migratory periods. Our data suggest that the extent of seasonal fat deposits corresponds with migratory tendency in these facultative taxa. Specifically, nomadic red crossbills with a seasonally predictable annual movement demonstrated relatively large seasonal fat deposits coincident with the migratory periods. In contrast, pine siskins, thought to be more variable in timing and initiation of nomadic movements, had smaller peaks in fat deposits during the migratory season, and the partial migrant American goldfinch and the resident house finch showed no peaks coincident with migratory periods. Within the red crossbills, those ecotypes that are closely associated with pine habitats showed larger peaks in fat deposits coincident with autumn migratory periods and had higher wing loading, whereas those ecotypes associated with spruces, Douglas-fir and hemlocks showed larger peaks coincident with spring migratory periods and lower wing loading. We conclude that population averages of fat deposits do reflect facultative migration strategies in these species, as well as the winter thermogenic challenges at the study locations. A difference in seasonal fattening and wing loading among red crossbill ecotypes is consistent with the possibility that they differ in their migratory biology, and we discuss these differences in light of crossbill reproductive schedules and phenologies of different conifer species. 
    more » « less