skip to main content


Title: A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells
Abstract The implementation of nano-engineered composite oxides opens up the way towards the development of a novel class of functional materials with enhanced electrochemical properties. Here we report on the realization of vertically aligned nanocomposites of lanthanum strontium manganite and doped ceria with straight applicability as functional layers in high-temperature energy conversion devices. By a detailed analysis using complementary state-of-the-art techniques, which include atom-probe tomography combined with oxygen isotopic exchange, we assess the local structural and electrochemical functionalities and we allow direct observation of local fast oxygen diffusion pathways. The resulting ordered mesostructure, which is characterized by a coherent, dense array of vertical interfaces, shows high electrochemically activity and suppressed dopant segregation. The latter is ascribed to spontaneous cationic intermixing enabling lattice stabilization, according to density functional theory calculations. This work highlights the relevance of local disorder and long-range arrangements for functional oxides nano-engineering and introduces an advanced method for the local analysis of mass transport phenomena.  more » « less
Award ID(s):
2016453 1565822
NSF-PAR ID:
10329987
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Nickel nitride (Ni 3 N) is known as one of the promising precatalysts for the electrochemical oxygen evolution reaction (OER) under alkaline conditions. Due to its relatively low oxidation resistance, Ni 3 N is electrochemically self-oxidized into nickel oxides/oxyhydroxides (electroactive sites) during the OER. However, we lack a full understanding of the effects of Ni 3 N self-oxidation and Fe impurity incorporation into Ni 3 N from electrolyte towards OER activity. Here, we report on our examination of the compositional and structural transformation of Ni 3 N precatalyst layers on Ni foams (Ni 3 N/Ni foam) during extended periods of OER testing in Fe-purified and unpurified KOH media using both a standard three-electrode cell and a flow cell, and discuss their electrocatalytic properties. After the OER tests in both KOH media, the Ni 3 N surfaces were converted into amorphous, nano-porous nickel oxide/(oxy)hydroxide surfaces. In the Fe-purified electrolyte, a decrease in OER activity was confirmed after the OER test because of the formation of pure NiOOH with low OER activity and electrical conductivity. Conversely, in the unpurified electrolyte, a continuous increase in OER activity was observed over the OER testing, which may have resulted from the Fe incorporation into the self-oxidation-formed NiOOH. Our experimental findings revealed that Fe impurities play an essential role in obtaining notable OER activity using the Ni 3 N precatalyst. Additionally, our Ni 3 N/Ni foam electrode exhibited a low OER overpotential of 262 mV to reach a geometric current density of 10 mA cm geo −2 in a flow cell with unpurified electrolyte. 
    more » « less
  2. In functional materials, the local environment around active species that may contain just a few nearest-neighboring atomic shells often changes in response to external conditions. Strong disorder in the local environment poses a challenge to commonly used extended X-ray absorption fine structure (EXAFS) analysis. Furthermore, the dilute concentrations of absorbing atoms, small sample size and the constraints of the experimental setup often limit the utility of EXAFS for structural analysis. X-ray absorption near-edge structure (XANES) has been established as a good alternative method to provide local electronic and geometric information of materials. The pre-edge region in the XANES spectra of metal compounds is a useful but relatively under-utilized resource of information of the chemical composition and structural disorder in nano-materials. This study explores two examples of materials in which the transition metal environment is either relatively symmetric or strongly asymmetric. In the former case, EXAFS results agree with those obtained from the pre-edge XANES analysis, whereas in the latter case they are in a seeming contradiction. The two observations are reconciled by revisiting the limitations of EXAFS in the case of a strong, asymmetric bond length disorder, expected for mixed-valence oxides, and emphasize the utility of the pre-edge XANES analysis for detecting local heterogeneities in structural and compositional motifs. 
    more » « less
  3. Much of the large quantity of plastics produced annually is discharged into the environment, where it degrades into tiny plastic debris (e.g., macro-, micro-, and nano-plastics). There are increasing concerns about the adverse effects of these plastics. In particular, nanoplastics are more prone to interacting with surrounding substances, because of their substantially larger surface areas and consequent increased exposure of surface functional groups. However, the oxidative roles of nanoplastics in inducing redox reactions with heavy or transition metals remain poorly understood. In this study, we investigated how Mn2+ was oxidized by the photolysis of polystyrene (PS)-based nanoplastics. We found that peroxyl (ROO•) and superoxide radicals (O2•−) were generated during the photolysis of PS-based nanoplastics, and they were primarily responsible for Mn oxidation. In addition, different plastic particle sizes and functional groups influenced the formation of radicals and the growth and mineral phases of Mn oxide solids. This study provides insights into the occurrence and diversity of Mn oxides in nature. These new findings also enhance our understanding of the oxidative roles of nanoplastics in generating reactive oxygen species (ROS) and how this may apply to the oxidation of other redox-active metal ions and essential chemicals, which could disrupt ecosystems and affect elemental cycling. Moreover, the production of ROS from nanoplastics in the presence of light endangers marine life and human health, and also potentially affects the mobility of the nanoplastics in the environment via redox reactions, which in turn might negatively impact their environmental remediation. 
    more » « less
  4. Abstract

    Based on the coincident onsets of oxygen evolution reaction (OER) and metal dissolution for many metal‐oxide catalysts it was suggested that OER triggers dissolution. It is believed that both processes share common intermediates, yet exact mechanistic details remain largely unknown. For example, there is still no clear understanding as to why rutile IrO2exhibits such an exquisite stability among water‐splitting electrocatalysts. Here, we employ density functional theory calculations to analyze interactions between water and the (110) surface of rutile RuO2and IrO2as a response to oxygen evolution involving lattice oxygen species. We observe that these oxides display qualitatively different interfacial behavior that should have important implications for their electrochemical stability. Specifically, it is found that IrO2(110) becomes further stabilized under OER conditions due to the tendency to form highly stable low oxidation state Ir(III) species. In contrast, Ru species at RuO2(110) are prone to facile reoxidation by solution water. This should facilitate the formation of high Ru oxidation state intermediates (>IV) accelerating surface restructuring and metal dissolution.

     
    more » « less
  5. Abstract

    This personal account concerns novel recent discoveries in the area of mesoporous materials. Most of the papers discussed have been published within the last two to three years. A major emphasis of most of these papers is the synthesis of unique mesoporous materials by a variety of synthetic methods. Many of these articles focus on the control of the pore sizes and shapes of mesoporous materials. Synthetic methods of various types have been used for such control of porosity including soft templating, hard templating, nano‐casting, electrochemical methods, surface functionalization, and trapping of species in pores. The types of mesoporous materials range from carbon materials, metal oxides, metal sulfides, metal nitrides, carbonitriles, metal organic frameworks (MOFs), and composite materials. The vast majority of recent publications have centered around biological applications with a majority dealing with drug delivery systems. Several other bio‐based articles on mesoporous systems concern biomass conversion and biofuels, magnetic resonance imaging (MRI) studies, ultrasound therapy, enzyme immobilization, antigen targeting, biodegradation of inorganic materials, applications for improved digestion, and antitumor activity. Numerous nonbiological applications of mesoporous materials have been pursued recently. Some specific examples are photocatalysis, photo‐electrocatalysis, lithium ion batteries, heterogeneous catalysis, extraction of metals, extraction of lanthanide and actinide species, chiral separations and catalysis, capturing and the mode of binding of carbon dioxide (CO2), optical devices, and magneto‐optical devices. Of this latter class of applications, heterogeneous catalysis is predominant. Some of the types of catalytic reactions being pursued include hydrogen generation, selective oxidations, aminolysis, Suzuki coupling and other coupling reactions, oxygen reduction reactions (ORR), oxygen evolution reactions (OER), and bifunctional catalysis. For perspective, there have been over 40,000 articles on mesoporous materials published in the last 4 years and about 1388 reviews. By no means is this personal account thorough or all inclusive. One objective has been to choose a variety of articles of different types to obtain a flavor of the breadth of diversity involved in the area of mesoporous materials.

     
    more » « less