In pursuit of higher inference accuracy, deep neural network (DNN) models have significantly increased in complexity and size. To overcome the consequent computational challenges, scalable chiplet-based accelerators have been proposed. However, data communication using metallic-based interconnects in these chiplet-based DNN accelerators is becoming a primary obstacle to performance, energy efficiency, and scalability. The photonic interconnects can provide adequate data communication support due to some superior properties like low latency, high bandwidth and energy efficiency, and ease of broadcast communication. In this paper, we propose SPACX: a Silicon Photonics-based Chiplet ACcelerator for DNN inference applications. Specifically, SPACX includes a photonic network design that enables seamless single-chiplet and cross-chiplet broadcast communications, and a tailored dataflow that promotes data broadcast and maximizes parallelism. Furthermore, we explore the broadcast granularities of the photonic network and implications on system performance and energy efficiency. A flexible bandwidth allocation scheme is also proposed to dynamically adjust communication bandwidths for different types of data. Simulation results using several DNN models show that SPACX can achieve 78% and 75% reduction in execution time and energy, respectively, as compared to other state-of-the-art chiplet-based DNN accelerators.
more »
« less
Scaling Deep-Learning Inference with Chiplet-based Architecture and Photonic Interconnects
Chiplet-based architectures have been proposed to scale computing systems for deep neural networks (DNNs). Prior work has shown that for the chiplet-based DNN accelerators, the electrical network connecting the chiplets poses a major challenge to system performance, energy consumption, and scalability. Some emerging interconnect technologies such as silicon photonics can potentially overcome the challenges facing electrical interconnects as photonic interconnects provide high bandwidth density, superior energy efficiency, and ease of implementing broadcast and multicast operations that are prevalent in DNN inference. In this paper, we propose a chiplet-based architecture named SPRINT for DNN inference. SPRINT uses a global buffer to simplify the data transmission between storage and computation, and includes two novel designs: (1) a reconfigurable photonic network that can support diverse communications in DNN inference with minimal implementation cost, and (2) a customized dataflow that exploits the ease of broadcast and multicast feature of photonic interconnects to support highly parallel DNN computations. Simulation studies using ResNet50 DNN model show that SPRINT achieves 46% and 61% execution time and energy consumption reduction, respectively, as compared to other state-of-the-art chiplet-based architectures with electrical or photonic interconnects.
more »
« less
- Award ID(s):
- 1901165
- PAR ID:
- 10330058
- Date Published:
- Journal Name:
- 58th ACM/IEEE Design Automation Conference (DAC)
- Page Range / eLocation ID:
- 931 to 936
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Today’s Deep Neural Network (DNN) inference systems contain hundreds of billions of parameters, resulting in significant latency and energy overheads during inference due to frequent data transfers between compute and memory units. Processing-in-Memory (PiM) has emerged as a viable solution to tackle this problem by avoiding the expensive data movement. PiM approaches based on electrical devices suffer from throughput and energy efficiency issues. In contrast, Optically-addressed Phase Change Memory (OPCM) operates with light and achieves much higher throughput and energy efficiency compared to its electrical counterparts. This paper introduces a system-level design that takes the OPCM programming overhead into consideration, and identifies that the programming cost dominates the DNN inference on OPCM-based PiM architectures. We explore the design space of this system and identify the most energy-efficient OPCM array size and batch size. We propose a novel thresholding and reordering technique on the weight blocks to further reduce the programming overhead. Combining these optimizations, our approach achieves up to 65.2x higher throughput than existing photonic accelerators for practical DNN workloads.more » « less
-
Generative adversarial networks (GANs) have emerged as a powerful solution for generating synthetic data when the availability of large, labeled training datasets is limited or costly in large-scale machine learning systems. Recent advancements in GAN models have extended their applications across diverse domains, including medicine, robotics, and content synthesis. These advanced GAN models have gained recognition for their excellent accuracy by scaling the model. However, existing accelerators face scalability challenges when dealing with large-scale GAN models. As the size of GAN models increases, the demand for computation and communication resources during inference continues to grow. To address this scalability issue, this article proposes Chiplet-GAN, a chiplet-based accelerator design for GAN inference. Chiplet-GAN enables scalability by adding more chiplets to the system, thereby supporting the scaling of computation capabilities. To handle the increasing communication demand as the system and model scale, a novel interconnection network with adaptive topology and passive/active network links is developed to provide adequate communication support for Chiplet-GAN. Coupled with workload partition and allocation algorithms, Chiplet-GAN reduces execution time and energy consumption for GAN inference workloads as both model and chiplet-system scales. Evaluation results using various GAN models show the effectiveness of Chiplet-GAN. On average, compared to GANAX, SpAtten, and Simba, the Chiplet-GAN reduces execution time and energy consumption by 34% and 21%, respectively. Furthermore, as the system scales for large-scale GAN model inference, Chiplet-GAN achieves reductions in execution time of up to 63% compared to the Simba, a chiplet-based accelerator.more » « less
-
Generative adversarial networks (GANs) have emerged as a powerful solution for generating synthetic data when the availability of large, labeled training datasets is limited or costly in large-scale machine learning systems. Recent advancements in GAN models have extended their applications across diverse domains, including medicine, robotics, and content synthesis. These advanced GAN models have gained recognition for their excellent accuracy by scaling the model. However, existing accelerators face scalability challenges when dealing with large-scale GAN models. As the size of GAN models increases, the demand for computation and communication resources during inference continues to grow. To address this scalability issue, this article proposes Chiplet-GAN, a chiplet-based accelerator design for GAN inference. Chiplet-GAN enables scalability by adding more chiplets to the system, thereby supporting the scaling of computation capabilities. To handle the increasing communication demand as the system and model scale, a novel interconnection network with adaptive topology and passive/active network links is developed to provide adequate communication support for Chiplet-GAN. Coupled with workload partition and allocation algorithms, Chiplet-GAN reduces execution time and energy consumption for GAN inference workloads as both model and chiplet-system scales. Evaluation results using various GAN models show the effectiveness of Chiplet-GAN. On average, compared to GANAX, SpAtten, and Simba, the Chiplet-GAN reduces execution time and energy consumption by 34% and 21%, respectively. Furthermore, as the system scales for large-scale GAN model inference, Chiplet-GAN achieves reductions in execution time of up to 63% compared to the Simba, a chiplet-based accelerator.more » « less
-
Abstract As deep neural network (DNN) models grow ever-larger, they can achieve higher accuracy and solve more complex problems. This trend has been enabled by an increase in available compute power; however, efforts to continue to scale electronic processors are impeded by the costs of communication, thermal management, power delivery and clocking. To improve scalability, we propose a digital optical neural network (DONN) with intralayer optical interconnects and reconfigurable input values. The path-length-independence of optical energy consumption enables information locality between a transmitter and a large number of arbitrarily arranged receivers, which allows greater flexibility in architecture design to circumvent scaling limitations. In a proof-of-concept experiment, we demonstrate optical multicast in the classification of 500 MNIST images with a 3-layer, fully-connected network. We also analyze the energy consumption of the DONN and find that digital optical data transfer is beneficial over electronics when the spacing of computational units is on the order of$$>10\,\upmu $$ m.more » « less