skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The essential dimension of congruence covers
Abstract Consider the algebraic function $$\Phi _{g,n}$$ that assigns to a general $$g$$ -dimensional abelian variety an $$n$$ -torsion point. A question first posed by Klein asks: What is the minimal $$d$$ such that, after a rational change of variables, the function $$\Phi _{g,n}$$ can be written as an algebraic function of $$d$$ variables? Using techniques from the deformation theory of $$p$$ -divisible groups and finite flat group schemes, we answer this question by computing the essential dimension and $$p$$ -dimension of congruence covers of the moduli space of principally polarized abelian varieties. We apply this result to compute the essential $$p$$ -dimension of congruence covers of the moduli space of genus $$g$$ curves, as well as its hyperelliptic locus, and of certain locally symmetric varieties. These results include cases where the locally symmetric variety $$M$$ is proper . As far as we know, these are the first examples of nontrivial lower bounds on the essential dimension of an unramified, nonabelian covering of a proper algebraic variety.  more » « less
Award ID(s):
1944862 1811846
PAR ID:
10330092
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Compositio Mathematica
Volume:
157
Issue:
11
ISSN:
0010-437X
Page Range / eLocation ID:
2407 to 2432
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    For X a smooth, proper complex variety we show that for p≫0, the restriction of the mod p cohomology Hi(X,Fp) to any Zariski open has dimension at least h0,iX . The proof uses the prismatic cohomology of Bhatt and Scholze. We use this result to obtain lower bounds on the p-essential dimension of covers of complex varieties. For example, we prove the p-incompressibility of the mod p homology cover of an abelian variety, confirming a conjecture of Brosnan for sufficiently large p. By combining these techniques with the theory of toroidal compactifications of Shimura varieties, we show that for any Hermitian symmetric domain X, there exist p-congruence covers that are p-incompressible. 
    more » « less
  2. The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic functions. This paper aims to apply modern arithmetic techniques to the circle of “resolvent problems” formulated and pursued by Klein, Hilbert and others. As one example, we prove that the essential dimension at 𝑝=2 for the symmetric groups 𝑆𝑛 is equal to the essential dimension at 2 of certain 𝑆𝑛-coverings defined using moduli spaces of principally polarized abelian varieties. Our proofs use the deformation theory of abelian varieties in characteristic p, specifically Serre-Tate theory, as well as a family of remarkable mod 2 symplectic 𝑆𝑛-representations constructed by Jordan. As shown in an appendix by Nate Harman, the properties we need for such representations exist only in the 𝑝=2 case. In the second half of this paper we introduce the notion of ℰ-versality as a kind of generalization of Kummer theory, and we prove that many congruence covers are ℰ-versal. We use these ℰ-versality result to deduce the equivalence of Hilbert’s 13th Problem (and related conjectures) with problems about congruence covers. 
    more » « less
  3. Abstract For$$g\ge 2$$and$$n\ge 0$$, let$$\mathcal {H}_{g,n}\subset \mathcal {M}_{g,n}$$denote the complex moduli stack ofn-marked smooth hyperelliptic curves of genusg. A normal crossings compactification of this space is provided by the theory of pointed admissible$$\mathbb {Z}/2\mathbb {Z}$$-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of$$\mathcal {H}_{g, n}$$. Using this graph complex, we give a sum-over-graphs formula for the$$S_n$$-equivariant weight zero compactly supported Euler characteristic of$$\mathcal {H}_{g, n}$$. This formula allows for the computer-aided calculation, for each$$g\le 7$$, of the generating function$$\mathsf {h}_g$$for these equivariant Euler characteristics for alln. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissibleG-covers of genus zero curves, whenGis abelian, as a symmetric$$\Delta $$-complex. We use these complexes to generalize our formula for$$\mathsf {h}_g$$to moduli spaces ofn-pointed smooth abelian covers of genus zero curves. 
    more » « less
  4. Given a smooth quasi-projective complex algebraic variety $$\mathcal{S}$$, we prove that there are only finitely many Hodge-generic non-isotrivial families of smooth projective hypersurfaces over $$\mathcal{S}$$ of degree $$d$$ in $$\mathbb{P}_{\mathbb C}^{n+1}$$. We prove that the finiteness is uniform in $$\mathcal{S}$$ and give examples where the result is sharp. We also prove similar results for certain complete intersections in $$\mathbb{P}_{\mathbb C}^{n+1}$$ of higher codimension and more generally for algebraic varieties whose moduli space admits a period map that satisfies the infinitesimal Torelli theorem. 
    more » « less
  5. Abstract We define a notion of height for rational points with respect to a vector bundle on a proper algebraic stack with finite diagonal over a global field, which generalizes the usual notion for rational points on projective varieties. We explain how to compute this height for various stacks of interest (for instance: classifying stacks of finite groups, symmetric products of varieties, moduli stacks of abelian varieties, weighted projective spaces). In many cases, our uniform definition reproduces ways already in use for measuring the complexity of rational points, while in others it is something new. Finally, we formulate a conjecture about the number of rational points of bounded height (in our sense) on a stack $$\mathcal {X}$$ , which specializes to the Batyrev–Manin conjecture when $$\mathcal {X}$$ is a scheme and to Malle’s conjecture when $$\mathcal {X}$$ is the classifying stack of a finite group. 
    more » « less