skip to main content

This content will become publicly available on June 1, 2023

Title: Structural and electrical properties of thick κ -Ga 2 O 3 grown on GaN/sapphire templates
Thick (23 µm) films of κ-Ga 2 O 3 were grown by Halide Vapor Phase Epitaxy (HVPE) on GaN/sapphire templates at 630 °C. X-ray analysis confirmed the formation of single-phase κ-Ga 2 O 3 with half-widths of the high-resolution x-ray diffraction (004), (006), and (008) symmetric reflections of 4.5 arc min and asymmetric (027) reflection of 14 arc min. Orthorhombic κ-Ga 2 O 3 polymorph formation was confirmed from analysis of the Kikuchi diffraction pattern in electron backscattering diffraction. Secondary electron imaging indicated a reasonably flat surface morphology with a few (area density ∼10 3  cm −2 ) approximately circular (diameter ∼50–100 µm) uncoalesced regions, containing κ-Ga 2 O 3 columns with in-plane dimensions and a height of about 10 µm. Micro-cathodoluminescence (MCL) spectra showed a wide 2–3.5 eV band that could be deconvoluted into narrower bands peaked at 2.59, 2.66, 2.86, and 3.12 eV. Ni Schottky diodes prepared on the films showed good rectification but a high series resistance. The films had a thin near-surface region dominated by E c − 0.7 eV deep centers and a deeper region (∼2 µm from the surface) dominated by shallow donors with concentrations of ≤10 16  cm −3 . Photocurrent and photocapacitance spectra showed the presence of more » deep compensating acceptors with optical ionization energies of ∼1.35 and 2.3 eV, the latter being close to the energy of one of the MCL bands. Deep level transient spectroscopy revealed deep traps with energies near 0.3, 0.6, 0.7, 0.8, and 1 eV from the conduction band edge. The results show the potential of HVPE to grow very thick κ-Ga 2 O 3 on GaN/sapphire templates. « less
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
APL Materials
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on growth and electrical properties of α-Ga2O3films prepared by halide vapor phase epitaxy (HVPE) at 500 °C on α-Cr2O3buffers predeposited on sapphire by magnetron sputtering. The α-Cr2O3buffers showed a wide microcathodoluminescence (MCL) peak near 350 nm corresponding to the α-Cr2O3bandgap and a sharp MCL line near 700 nm due to the Cr+intracenter transition. Ohmic contacts to Cr2O3were made with both Ti/Au or Ni, producing linear current–voltage ( I– V) characteristics over a wide temperature range with an activation energy of conductivity of ∼75 meV. The sign of thermoelectric power indicated p-type conductivity of the buffers. Sn-doped, 2- μm-thick α-Ga2O3films prepared on this buffer by HVPE showed donor ionization energies of 0.2–0.25 eV, while undoped films were resistive with the Fermi level pinned at ECof 0.3 eV. The I– V and capacitance–voltage ( C– V) characteristics of Ni Schottky diodes on Sn-doped samples using a Cr2O3buffer indicated the presence of two face-to-face junctions, one between n-Ga2O3and p-Cr2O3, the other due to the Ni Schottky diode with n-Ga2O3. The spectral dependence of the photocurrent measured on the structure showed the presence of three major deep traps with optical ionization thresholds near 1.3, 2, and 2.8 eV. Photoinduced current transient spectroscopy spectra of the structures were dominated bymore »deep traps with an ionization energy of 0.95 eV. These experiments suggest another pathway to obtain p–n heterojunctions in the α-Ga2O3system.

    « less
  2. Two-inch diameter α -Ga 2 O 3 films with thickness ∼4 μ m were grown on basal plane sapphire by Halide Vapor Phase Epitaxy (HVPE) and doped with Sn in the top ∼1 μ m from the surface. These films were characterized with High-Resolution X-ray Diffraction (HRXRD), Scanning Electron Microscope (SEM) imaging in the Secondary Electron (SE) and Micro-cathodoluminescence (MCL) modes, contactless sheet resistivity mapping, capacitance-voltage, current-voltage, admittance spectra, and Deep Level Transient Spectroscopy (DLTS) measurements. The edge and screw dislocations densities estimated from HRXRD data were respectively 7.4 × 10 9 cm −2 and 1.5 × 10 7 cm −2 , while the films had a smooth surface with a low density (∼10 3 cm −2 ) of circular openings with diameters between 10 and 100 μ m. The sheet resistivity of the films varied over the entire 2-inch diameter from 200 to 500 Ω square −1 . The net donor concentration was ∼10 18 cm −3 near the surface and increased to ∼4 × 10 18 cm −3 deeper inside the sample. The deep traps observed in admittance and DLTS spectra had levels at E c −0.25 eV and E c −0.35 eV, with concentration ∼10 15 cmmore »−3 and E c −1 eV with concentration ∼10 16 cm −3 .« less
  3. Halide vapor phase epitaxial (HVPE) Ga 2 O 3 films were grown on c-plane sapphire and diamond substrates at temperatures up to 550 °C without the use of a barrier dielectric layer to protect the diamond surface. Corundum phase α-Ga 2 O 3 was grown on the sapphire substrates, whereas the growth on diamond resulted in regions of nanocrystalline β-Ga 2 O 3 (nc-β-Ga 2 O 3 ) when oxygen was present in the HVPE reactor only during film growth. X-ray diffraction confirmed the growth of α-Ga 2 O 3 on sapphire but failed to detect any β-Ga 2 O 3 reflections from the films grown on diamond. These films were further characterized via Raman spectroscopy, which revealed the β-Ga 2 O 3 phase of these films. Transmission electron microscopy demonstrated the nanocrystalline character of these films. From cathodoluminescence spectra, three emission bands, UVL′, UVL, and BL, were observed for both the α-Ga 2 O 3 /sapphire and nc-Ga 2 O 3 /diamond, and these bands were centered at approximately 3.7, 3.2, and 2.7 eV.
  4. Films of α-Ga 2 O 3 grown by Halide Vapor Phase Epitaxy (HVPE) were irradiated with protons at energies of 330, 400, and 460 keV with fluences 6 × 10 15  cm −2 and with 7 MeV C 4+ ions with a fluence of 1.3 × 10 13  cm −2 and characterized by a suite of measurements, including Photoinduced Transient Current Spectroscopy (PICTS), Thermally Stimulated Current (TSC), Microcathodoluminescence (MCL), Capacitance–frequency (C–f), photocapacitance and Admittance Spectroscopy (AS), as well as by Positron Annihilation Spectroscopy (PAS). Proton irradiation creates a conducting layer near the peak of the ion distribution and vacancy defects distribution and introduces deep traps at E c -0.25, 0.8, and 1.4 eV associated with Ga interstitials, gallium–oxygen divacancies V Ga –V O , and oxygen vacancies V O . Similar defects were observed in C implanted samples. The PAS results can also be interpreted by assuming that the observed changes are due to the introduction of V Ga and V Ga –V O .
  5. Epitaxial growth of κ-phase Ga 2 O 3 thin films is investigated on c-plane sapphire, GaN- and AlN-on-sapphire, and (100) oriented yttria stabilized zirconia (YSZ) substrates via metalorganic chemical vapor deposition. The structural and surface morphological properties are investigated by comprehensive material characterization. Phase pure κ-Ga 2 O 3 films are successfully grown on GaN-, AlN-on-sapphire, and YSZ substrates through a systematical tuning of growth parameters including the precursor molar flow rates, chamber pressure, and growth temperature, whereas the growth on c-sapphire substrates leads to a mixture of β- and κ-polymorphs of Ga 2 O 3 under the investigated growth conditions. The influence of the crystalline structure, surface morphology, and roughness of κ-Ga 2 O 3 films grown on different substrates are investigated as a function of precursor flow rate. High-resolution scanning transmission electron microscopy imaging of κ-Ga 2 O 3 films reveals abrupt interfaces between the epitaxial film and the sapphire, GaN, and YSZ substrates. The growth of single crystal orthorhombic κ-Ga 2 O 3 films is confirmed by analyzing the scanning transmission electron microscopy nanodiffraction pattern. The chemical composition, surface stoichiometry, and bandgap energies of κ-Ga 2 O 3 thin films grown on different substrates are studied bymore »high-resolution x-ray photoelectron spectroscopy (XPS) measurements. The type-II (staggered) band alignments at three interfaces between κ-Ga 2 O 3 and c-sapphire, AlN, and YSZ substrates are determined by XPS, with an exception of κ-Ga 2 O 3 /GaN interface, which shows type-I (straddling) band alignment.« less