Despite the early development of causal reasoning (CR), and its potential for shaping scientific literacy, we have little understanding of its structural origins. Specifically, is CR a unique capability that develops relatively independently or is it largely dependent on broader, more fundamental, cognitive abilities? Executive Functioning (EF) is an especially promising contributor to CR based on its already established role in related skills like planning and problem solving (e.g., Diamond, 2013). To begin exploring this potential relationship, we assessed 123 three (Mage = 3.42 years) and 64 five year olds’ (Mage = 5.36 years) performance on two CR tasks (counterfactual reasoning and causal inference), each of which we expected might be influenced in different ways by distinct EF skills. The counterfactual reasoning task (Guajardo & Turley-Ames, 2004) required children to generate alternative courses of action that would lead to different outcomes in fictional vignettes. The causal inference task (Das Gupta & Bryant, 1989) required children to compare pictures taken before and after a transformation (e.g., broken flowerpot and intact flowerpot) and to select a tool (e.g., glue) that could have caused it. We measured EF with three tasks: flanker (inhibition), count and label (working memory), and dimensional change card sort (cognitive flexibility). Finally, we measured children’s vocabulary and processing speed. To explore the relationship between EF and CR, we conducted a series of four linear regressions predicting causal inference and counterfactual reasoning ability in 3 and 5 year olds. Of all our measures, only vocabulary and inhibitory control emerged as significant predictors of causal inference ability for both 3 (βvocab = .04, p = .002, and βinhib = .04, p = .04) and 5 year olds (βvocab = .03, p = .01, and βinhib = .02, p = .04). Similarly, inhibitory control emerged as the only significant predictor of counterfactual reasoning in 3 year olds, βinhib = .03, p = .03. In contrast, for 5 year olds, working memory was the only significantly predictor of counterfactual reasoning, βWM = .71, p = .02. These results suggest that causal inference skills are stably supported by inhibitory control throughout early childhood. The story for counterfactual reasoning, however, appears to be somewhat more complex. Consistent with previous work (Beck, Riggs & Gorniak, 2009), inhibitory control supported counterfactual reasoning ability in our 3-year-old sample. However, inhibitory control did not significantly predict counterfactual reasoning in 5 year olds, it was supported by working memory instead. One explanation for this difference might have to do with the sophistication of children’s counterfactual reasoning skills at these different ages. Taken together, these results suggest that CR does not develop as a unique capacity, but instead likely relies on EFs that influence different CR skills in distinct ways across development. This represents an initial step in understanding early CR skills, which are promising contributors to emerging scientific literacy.
more »
« less
Children’s Acquisition of the Concept of Antonym Across Different Lexical Classes
Understanding abstract relations, and reasoning about various instantiations of the same relation, is an important marker in human cognition. Here we focus on development of understanding for the concept of antonymy. We examined whether four- and five-year-olds (N= 67) are able to complete an analogy task involving antonyms, whether language cues facilitate children’s ability to reason about the antonym relation, and how their performance compares with that of two vector-based computational models. We found that explicit relation labels in the form of a relation phrase (“opposites”) improved performance on the task for five-year-olds but not four-year-olds. Five-year-old (but not four-year-old) children were more accurate for adjective and verb antonyms than for noun antonyms. Two computational models showed substantial variability in performance across different lexical classes, and in some cases fell short of children’s accuracy levels. These results suggest that young children acquire a solid understanding of the abstract relation of opposites, and can generalize it to various instantiations across different lexical classes. These developmental results challenge relation models based on vector semantics, and highlight the importance of examining performance across different parts of speech.
more »
« less
- Award ID(s):
- 1827374
- PAR ID:
- 10330139
- Date Published:
- Journal Name:
- Proceedings of the 44th Annual Meeting of the Cognitive Science Society
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Examining age differences in motor learning using real-world tasks is often problematic due to task novelty and biomechanical confounds. Here, we investigated how children and adults acquire a novel motor skill in a virtual environment. Participants of three different age groups (9-year-olds, 12-year-olds, and adults) learned to use their upper body movements to control a cursor on a computer screen. Results showed that 9-year-old and 12-year-old children showed poorer ability to control the cursor at the end of practice. Critically, when we investigated the movement coordination, we found that the lower task performance of children was associated with limited exploration of their movement repertoire. These results reveal the critical role of motor exploration in understanding developmental differences in motor learning.more » « less
-
Children struggle with exact, symbolic ratio reasoning, but prior research demonstrates children show surprising intuition when making approximate, nonsymbolic ratio judgments. In the current experiment, eighty‐five 6‐ to 8‐year‐old children made approximate ratio judgments with dot arrays and numerals. Children were adept at approximate ratio reasoning in both formats and improved with age. Children who engaged in the nonsymbolic task first performed better on the symbolic task compared to children tested in the reverse order, suggesting that nonsymbolic ratio reasoning may function as a scaffold for symbolic ratio reasoning. Nonsymbolic ratio reasoning mediated the relation between children’s numerosity comparison performance and symbolic mathematics performance in the domain of probabilities, but numerosity comparison performance explained significant unique variance in general numeration skills.more » « less
-
Abstract Causal reasoning is a fundamental cognitive ability that enables individuals to learn about the complex interactions in the world around them. However, the mechanisms that underpin causal reasoning are not well understood. For example, it remains unresolved whether children's causal inferences are best explained by Bayesian inference or associative learning. The two experiments and computational models reported here were designed to examine whether 5‐ and 6‐year‐olds will retrospectively reevaluate objects—that is, adjust their beliefs about the causal status of some objects presented at an earlier point in time based on the observed causal status of other objects presented at a later point in time—when asked to reason about 3 and 4 objects and under varying degrees of information processing demands. Additionally, the experiments and models were designed to determine whether children's retrospective reevaluations were best explained by associative learning, Bayesian inference, or some combination of both. The results indicated that participants retrospectively reevaluated causal inferences under minimal information‐processing demands (Experiment 1) but failed to do so under greater information processing demands (Experiment 2) and that their performance was better captured by an associative learning mechanism, with less support for descriptions that rely on Bayesian inference. Research HighlightsFive‐ and 6‐year‐old children engage in retrospective reevaluation under minimal information‐processing demands (Experiment 1).Five‐ and 6‐year‐old children do not engage in retrospective reevaluation under more extensive information‐processing demands (Experiment 2).Across both experiments, children's retrospective reevaluations were better explained by a simple associative learning model, with only minimal support for a simple Bayesian model.These data contribute to our understanding of the cognitive mechanisms by which children make causal judgements.more » « less
-
People’s mental states constantly change as they navigate and interact with their environment. Accordingly, social reasoning requires us not only to represent mental states but also to understand the ways in which mental states tend to change. Despite their importance, relatively little is known about children’s understanding of the dynamics of mental states. To explore this question, we studied a common type of mental state change: knowledge gain. Specifically, we studied whether five- and six-year-olds distinguish between agents who gain knowledge from those who lose knowledge. In one condition, children saw an agent answer a two-alternative choice question incorrectly, followed by an identical-looking agent who answered the same question correctly (i.e., gaining knowledge). In another condition, children saw the reverse pattern (i.e., losing knowledge). Children were more likely to infer they had seen two different agents in the knowledge loss condition relative to the knowledge gain condition. These results suggest that children have intuitions about how epistemic states change and open new questions about children’s naive theories of mental state dynamics.more » « less
An official website of the United States government

