skip to main content


Title: Children show limited movement repertoire when learning a novel motor skill
Examining age differences in motor learning using real-world tasks is often problematic due to task novelty and biomechanical confounds. Here, we investigated how children and adults acquire a novel motor skill in a virtual environment. Participants of three different age groups (9-year-olds, 12-year-olds, and adults) learned to use their upper body movements to control a cursor on a computer screen. Results showed that 9-year-old and 12-year-old children showed poorer ability to control the cursor at the end of practice. Critically, when we investigated the movement coordination, we found that the lower task performance of children was associated with limited exploration of their movement repertoire. These results reveal the critical role of motor exploration in understanding developmental differences in motor learning.  more » « less
Award ID(s):
1654929
NSF-PAR ID:
10053508
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Developmental science
ISSN:
1467-7687
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Examining age differences in motor learning using real‐world tasks is often problematic due to task novelty and biomechanical confounds. Here, we investigated how children and adults acquire a novel motor skill in a virtual environment. Participants of three different age groups (9‐year‐olds, 12‐year‐olds, and adults) learned to use their upper body movements to control a cursor on a computer screen. Results showed that 9‐year‐old and 12‐year‐old children showed poorer ability to control the cursor at the end of practice. Critically, when we investigated the movement coordination, we found that the lower task performance of children was associated with limited exploration of their movement repertoire. These results reveal the critical role of motor exploration in understanding developmental differences in motor learning.

     
    more » « less
  2. Body-machine interfaces, i.e. interfaces that rely on body movements to control external assistive devices, have been proposed as a safe and robust means of achieving movement and mobility; however, how children learn these novel interfaces is poorly understood. Here we characterized the learning of a body-machine interface in young unimpaired adults, two groups of typically developing children (9-year and 12-year olds), and one child with congenital limb deficiency. Participants had to control the end-effector of a robot arm in 2D using movements of the shoulder and torso. Results showed a striking effect of age - children had much greater difficulty in learning the task compared to adults, with a majority of the 9-year old group unable to even complete the task. The 12-year olds also showed poorer task performance compared to adults (as measured by longer movement times and greater path lengths), which were associated with less effective search strategies. The child with congenital limb deficiency showed superior task performance compared to age-matched children, but had qualitatively distinct coordination strategies from the adults. Taken together, these results imply that children have difficulty learning non-intuitive interfaces and that the design of body-machine interfaces should account for these differences in pediatric populations. 
    more » « less
  3. Abstract

    Body-machine interfaces, i.e. interfaces that rely on body movements to control external assistive devices, have been proposed as a safe and robust means of achieving movement and mobility; however, how children learn these novel interfaces is poorly understood. Here we characterized the learning of a body-machine interface in young unimpaired adults, two groups of typically developing children (9-year and 12-year olds), and one child with congenital limb deficiency. Participants had to control the end-effector of a robot arm in 2D using movements of the shoulder and torso. Results showed a striking effect of age - children had much greater difficulty in learning the task compared to adults, with a majority of the 9-year old group unable to even complete the task. The 12-year olds also showed poorer task performance compared to adults (as measured by longer movement times and greater path lengths), which were associated with less effective search strategies. The child with congenital limb deficiency showed superior task performance compared to age-matched children, but had qualitatively distinct coordination strategies from the adults. Taken together, these results imply that children have difficulty learning non-intuitive interfaces and that the design of body-machine interfaces should account for these differences in pediatric populations.

     
    more » « less
  4. Abstract Research Highlights

    Children and adults conceptually and perceptually categorize speech and song from age 4.

    Listeners use F0 instability, harmonicity, spectral flux, and utterance duration to determine whether vocal stimuli sound like song.

    Acoustic cue weighting changes with age, becoming adult‐like at age 8 for perceptual categorization and at age 12 for conceptual differentiation.

    Young children are still learning to categorize speech and song, which leaves open the possibility that music‐ and language‐specific skills are not so domain‐specific.

     
    more » « less
  5. Abstract

    Adults struggle to recollect episodic memories from early life. This phenomenon—referred to as “infantile” and “childhood amnesia”—has been widely observed across species and is characterized by rapid forgetting from birth until early childhood. While a number of studies have focused on infancy, few studies have examined the persistence of memory for newly learned associations during the putative period of childhood amnesia. In this study, we investigated forgetting in 137 children ages 3–5 years old by using an interactive storybook task. We assessed associative memory between subjects after 5‐min, 24‐h, and 1‐week delay periods. Across all delays, we observed a significant increase in memory performance with age. While all ages demonstrated above‐chance memory performance after 5‐min and 24‐h delays, we observed chance‐level memory accuracy in 3‐year‐olds following a 1‐week delay. The observed age differences in associative memory support the proposal that hippocampal‐dependent memory systems undergo rapid development during the preschool years. These data have the potential to inform future work translating memory persistence and malleability research from rodent models to humans by establishing timescales at which we expect young children to forget newly learned associations.

     
    more » « less