skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Layer-resolved many-electron interactions in delafossite PdCoO2 from standing-wave photoemission spectroscopy
Abstract When a three-dimensional material is constructed by stacking different two-dimensional layers into an ordered structure, new and unique physical properties can emerge. An example is the delafossite PdCoO 2 , which consists of alternating layers of metallic Pd and Mott-insulating CoO 2 sheets. To understand the nature of the electronic coupling between the layers that gives rise to the unique properties of PdCoO 2 , we revealed its layer-resolved electronic structure combining standing-wave X-ray photoemission spectroscopy and ab initio many-body calculations. Experimentally, we have decomposed the measured VB spectrum into contributions from Pd and CoO 2 layers. Computationally, we find that many-body interactions in Pd and CoO 2 layers are highly different. Holes in the CoO 2 layer interact strongly with charge-transfer excitons in the same layer, whereas holes in the Pd layer couple to plasmons in the Pd layer. Interestingly, we find that holes in states hybridized across both layers couple to both types of excitations (charge-transfer excitons or plasmons), with the intensity of photoemission satellites being proportional to the projection of the state onto a given layer. This establishes satellites as a sensitive probe for inter-layer hybridization. These findings pave the way towards a better understanding of complex many-electron interactions in layered quantum materials.  more » « less
Award ID(s):
2004125
PAR ID:
10330256
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Communications Physics
Volume:
4
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PdCoO 2 layered delafossite is the most conductive compound among metallic oxides, with a room-temperature resistivity of nearly $$2\,\mu \Omega \,{{{{{\rm{cm}}}}}}$$ 2 μ Ω cm , corresponding to a mean free path of about 600 Å. These values represent a record considering that the charge density of PdCoO 2 is three times lower than copper. Although its notable electronic transport properties, PdCoO 2 collective charge density modes (i.e. surface plasmons) have never been investigated, at least to our knowledge. In this paper, we study surface plasmons in high-quality PdCoO 2 thin films, patterned in the form of micro-ribbon arrays. By changing their width W and period 2 W , we select suitable values of the plasmon wavevector q , experimentally sampling the surface plasmon dispersion in the mid-infrared electromagnetic region. Near the ribbon edge, we observe a strong field enhancement due to the plasmon confinement, indicating PdCoO 2 as a promising infrared plasmonic material. 
    more » « less
  2. Abstract Complex correlated states emerging from many-body interactions between quasiparticles (electrons, excitons and phonons) are at the core of condensed matter physics and material science. In low-dimensional materials, quantum confinement affects the electronic, and subsequently, optical properties for these correlated states. Here, by combining photoluminescence, optical reflection measurements and ab initio theoretical calculations, we demonstrate an unconventional excitonic state and its bound phonon sideband in layered silicon diphosphide (SiP 2 ), where the bound electron–hole pair is composed of electrons confined within one-dimensional phosphorus–phosphorus chains and holes extended in two-dimensional SiP 2 layers. The excitonic state and emergent phonon sideband show linear dichroism and large energy redshifts with increasing temperature. Our ab initio many-body calculations confirm that the observed phonon sideband results from the correlated interaction between excitons and optical phonons. With these results, we propose layered SiP 2 as a platform for the study of excitonic physics and many-particle effects. 
    more » « less
  3. Charge-transfer excitons are formed by photoexcited electrons and holes following charge transfer across a heterojunction. They are important quasiparticles for optoelectronic applications of semiconducting heterostructures. The newly developed two-dimensional heterostructures provide a new platform to study these excitons. We report spatially and temporally resolved transient absorption measurements on the dynamics of charge-transfer excitons in a MoS 2 /WS 2 /MoSe 2 trilayer heterostructure. We observed a non-classical lateral diffusion process of charge-transfer excitons with a decreasing diffusion coefficient. This feature suggests that hot charge-transfer excitons with large kinetic energies are formed and their cooling process persists for about 100 ps. The long energy relaxation time of excitons in the trilayer compared to its monolayer components is attributed to the reduced carrier and phonon scattering due to the dielectric screening effect in the trilayer. Our results help develop an in-depth understanding of the dynamics of charge-transfer excitons in two-dimensional heterostructures. 
    more » « less
  4. An electronic solid with itinerant carriers and localized magnetic moments represents a paradigmatic strongly correlated system. The electrical transport properties associated with the itinerant carriers, as they scatter off these local moments, have been scrutinized across a number of materials. Here, we analyze the transport characteristics associated with ultraclean PdCrO 2 —a quasi-two-dimensional material consisting of alternating layers of itinerant Pd-electrons and Mott-insulating CrO 2 layers—which shows a pronounced regime ofT-linear resistivity over a wide range of intermediate temperatures. By contrasting these observations to the transport properties in a closely related material PdCoO 2 , where the CoO 2 layers are band-insulators, we can rule out the traditional electron–phonon interactions as being responsible for this interesting regime. We propose a previously ignored electron-magneto-elastic interaction between the Pd-electrons, the Cr local moments and an out-of-plane phonon as the main scattering mechanism that leads to the significant enhancement of resistivity and aT-linear regime in PdCrO 2 at temperatures far in excess of the magnetic ordering temperature. We suggest a number of future experiments to confirm this picture in PdCrO 2 as well as other layered metallic/Mott-insulating materials. 
    more » « less
  5. Controlling charge density in two-dimensional (2D) materials is a powerful approach for engineering new electronic phases and properties. This control is traditionally realized by electrostatic gating. Here, we report an optical approach for generation of high carrier densities using transition metal dichalcogenide heterobilayers, WSe 2 /MoSe 2 , with type II band alignment. By tuning the optical excitation density above the Mott threshold, we realize the phase transition from interlayer excitons to charge-separated electron/hole plasmas, where photoexcited electrons and holes are localized to individual layers. High carrier densities up to 4 × 10 14 cm −2 can be sustained under both pulsed and continuous wave excitation conditions. These findings open the door to optical control of electronic phases in 2D heterobilayers. 
    more » « less