skip to main content

Title: Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events
Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (δ 18 O, δ 2 H, d-excess ) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 ( n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where δ 2 H = 7.6⋅δ 18 O–1.8 ( r 2 = 0.96, p < 0.01). Mean amount-weighted δ 18 O, δ 2 H, and d-excess values were −12.3, −93.5, and 4.9‰, respectively, with the lowest summer mean δ 18 O value observed in northwest Greenland (−19.9‰) and the highest in Iceland (−7.3‰). Southern Alaska recorded more » the lowest mean d-excess (−8.2%) and northern Russia the highest (9.9‰). We identify a range of δ 18 O-temperature coefficients from 0.31‰/°C (Alaska) to 0.93‰/°C (Russia). The steepest regression slopes (>0.75‰/°C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high δ 18 O values. Yet 32% of precipitation events, characterized by lower δ 18 O and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
Frontiers in Earth Science
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Measurements of oxygen and hydrogen stable isotopes in precipitation (δ18OPand δ2HP) provide a valuable tool for understanding modern hydrological processes and the empirical foundation for interpreting paleoisotope archives. However, long‐term data sets of modern δ18OPand δ2HPin southern Alaska are entirely absent, thus limiting our insight and application of regionally defined climate‐isotope relationships in this proxy‐rich region. We present and utilize a 13‐year‐long record of event‐based δ18OPand δ2HPdata from Anchorage, Alaska (2005–2018,n = 332), to determine the mechanisms controlling precipitation isotopes. Local surface air temperature explains ~30% of variability in the δ18OPdata with a temperature‐δ18O slope of 0.31 ‰/°C, indicating that δ18OParchives may not be suitable paleo‐thermometers in this region. Instead, back‐trajectory modeling reveals how winter δ18OP2HPreflects synoptic and mesoscale processes in atmospheric circulation that drive changes in the passage of air masses with different moisture sources, transport, and rainout histories. Specifically, meridional systems—with either northerly flow from the Arctic or southerly flow from the Gulf of Alaska—have relatively low δ18OP2HPdue to progressive cooling and removal of precipitation as it condenses with altitude over Alaska's southern mountain ranges. To the contrary, zonally derived moisture from either the North Pacific and/or Bering Sea retains relatively high δ18OP2HPvalues. These new data contribute a better understandingmore »of the modern Alaska water isotope cycle and provide an empirical basis for interpreting paleoisotope archives in context of regional atmospheric circulation.

    « less
  2. Abstract Tropical islands are simultaneously some of the most biodiverse and vulnerable places on Earth. Water resources help maintain the delicate balance on which the ecosystems and the population of tropical islands rely. Hydrogen and oxygen isotope analyses are a powerful tool in the study of the water cycle on tropical islands, although the scarcity of long-term and high-frequency data makes interpretation challenging. Here, a new dataset is presented based on weekly collection of rainfall H and O isotopic composition on the island of O‘ahu, Hawai‘i, beginning from July 2019 and still ongoing. The data show considerable differences in isotopic ratios produced by different weather systems, with Kona lows and upper-level lows having the lowest δ 2 H and δ 18 O values, and trade-wind showers the highest. The data also show significant spatial variability, with some sites being characterized by higher isotope ratios than others. The amount effect is not observed consistently at all sites. Deuterium excess shows a marked seasonal cycle, which is attributed to the different origin and history of the air masses that are responsible for rainfall in the winter and summer months. The local meteoric water line and a comparison of this dataset with amore »long-term historical record illustrate strong interannual variability and the need to establish a long-term precipitation isotope monitoring network for Hawai‘i. Significance Statement The isotopic composition of water is often used in the study of island water resources, but the scarcity of high-frequency datasets makes the interpretation of data difficult. The purpose of this study is to investigate the isotopic composition of rainfall on a mountainous island in the subtropics. Based on weekly data collection on O‘ahu, Hawai‘i, the results improve our understanding of the isotopic composition of rainfall due to different weather systems, like trade-wind showers or cold fronts, as well as its spatial and temporal variability. These results could inform the interpretation of data from other mountainous islands in similar climate zones.« less
  3. Abstract

    Lacustrine δ2H and δ18O isotope proxies are powerful tools for reconstructing past climate and precipitation changes in the Arctic. However, robust paleoclimate record interpretations depend on site‐specific lake water isotope systematics, which are poorly described in the eastern Canadian Arctic due to insufficient modern lake water isotope data. We use modern lake water isotopes (δ18O and δ2H) collected between 1994–1997 and 2017–2021 from a transect of sites spanning a Québec‐to‐Ellesmere Island gradient to evaluate the effects of inflow seasonality and evaporative enrichment on the δ2H and δ18O composition of lake water. Four lakes near Iqaluit, Nunavut sampled biweekly through three ice‐free seasons reflect mean annual precipitation isotopes with slight evaporative enrichment. In a 23° latitudinal transect of 181 lakes, through‐flowing lake water δ2H and δ18O fall along local meteoric water lines. Despite variability within each region, we observe a latitudinal pattern: southern lakes reflect mean annual precipitation isotopes, whereas northern lakes reflect summer‐biased precipitation isotopes. This pattern suggests that northern lakes are more fully flushed with summer precipitation, and we hypothesize that this occurs because the ratio of runoff to precipitation increases with latitude as vegetation cover decreases. Therefore, proxy records from through‐flowing lakes in this region should reflectmore »precipitation isotopes with minimal influence of evaporation, but vegetation changes in lake catchments across a latitudinal transect and through geologic time may influence the seasonality of lake water isotopic compositions. Thus, we recommend that future lake water isotope proxy records are considered in context with temperature and ecological proxy records.

    « less
  4. Abstract

    The isotopic composition of precipitation is used to trace water cycling and climate change, but interpretations of the environmental information recorded in central Andean precipitation isotope ratios are hindered by a lack of multi‐year records, poor spatial distribution of observations, and a predominant focus on Rayleigh distillation. To better understand isotopic variability in central Andean precipitation, we present a three‐year record of semimonthly δ18Opand δ2Hpvalues from 15 stations in southern Peru and triple oxygen isotope data, expressed as ∆′17Op, from 32 precipitation samples. Consistent with previous work, we find that elevation correlates negatively with δ18Opand that seasonal δ18Opvariations are related to upstream rainout and local convection. Spatial δ18Opvariations and atmospheric back trajectories show that both eastern‐ and western‐derived air masses bring precipitation to southern Peru. Seasonal d‐excesspcycles record moisture recycling and relative humidity at remote moisture sources, and both d‐excesspand ∆′17Opclearly differentiate evaporated and non‐evaporated samples. These results begin to establish the natural range of unevaporated ∆′17Opvalues in the central Andes and set the foundation for future paleoclimate and paleoaltimetry studies in the region. This study highlights the hydrologic understanding that comes from a combination of δ18Op, d‐excessp, and ∆′17Opdata and helps identify the evaporation, recycling, and rainout processesmore »that drive water cycling in the central Andes.

    « less
  5. Abstract

    The Arctic hydrological cycle is predicted to intensify as the Arctic warms, due to increased poleward moisture transport during summer and increased evaporation from seas once ice‐covered during winter. Records of past Arctic precipitation seasonality are important because they provide a context for these ongoing changes. In some Arctic lakes, stable isotopes of oxygen and hydrogen (δ18O and δ2H, respectively) vary seasonally, due to seasonal changes in precipitation δ18O and δ2H. We reconstruct precipitation seasonality from Lake N3, a well‐dated lake sediment archive in Disko Bugt, western Greenland, by generating Holocene records of two proxies that are produced at different times of the year, and therefore record different lake water seasonal isotopic compositions. Aquatic plants synthesize waxes throughout the summer, and their δ2H reflects winter‐biased precipitation δ2H at Lake N3, whereas chironomids synthesize their head capsules between late summer and winter, and their δ18O reflects summer‐biased precipitation δ18O at Lake N3. During the middle Holocene at Lake N3, aquatic plant leaf wax was strongly2H‐depleted, while chironomid chitin was18O‐enriched. We guide interpretations of these records using sensitivity tests of a lake water and energy balance model, where we change precipitation amount and isotope seasonality inputs. The sensitivity tests suggest thatmore »the contrasting trends between proxies were likely caused by an increase in precipitation amount during all seasons and an increase in precipitation isotope seasonality, in addition to proxy‐specific mechanisms, highlighting the importance of understanding lake‐ and proxy‐specific systematics when interpreting records from sediment archives.

    « less