skip to main content


Search for: All records

Award ID contains: 1936752

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we presentThe Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract

    The Russian invasion of Ukraine hampers the ability to adequately describe conditions across the Arctic, thus biasing the view on Arctic change. Here we benchmark the pan-Arctic representativeness of the largest high-latitude research station network, INTERACT, with or without Russian stations. Excluding Russian stations lowers representativeness markedly, with some biases being of the same magnitude as the expected shifts caused by climate change by the end of the century.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Abstract

    Accelerated warming of the Arctic can affect the global climate system by thawing permafrost and exposing organic carbon in soils to decompose and release greenhouse gases into the atmosphere. We used a process-based biosphere model (DVM-DOS-TEM) designed to simulate biophysical and biogeochemical interactions between the soil, vegetation, and atmosphere. We varied soil and environmental parameters to assess the impact on cryohydrological and biogeochemical outputs in the model. We analyzed the responses of ecosystem carbon balances to permafrost thaw by running site-level simulations at two long-term tundra ecological monitoring sites in Alaska: Eight Mile Lake (EML) and Imnavait Creek Watershed (IMN), which are characterized by similar tussock tundra vegetation but differing soil drainage conditions and climate. Model outputs showed agreement with field observations at both sites for soil physical properties and ecosystem CO2fluxes. Model simulations of Net Ecosystem Exchange (NEE) showed an overestimation during the frozen season (higher CO2emissions) at EML with a mean NEE of 26.98 ± 4.83 gC/m2/month compared to observational mean of 22.01 ± 5.67 gC/m2/month, and during the fall months at IMN, with a modeled mean of 19.21 ± 7.49 gC/m2/month compared to observation mean of 11.9 ± 4.45 gC/m2/month. Our results underscore the importance of representing the impact of soil drainage conditions on the thawing of permafrost soils, particularly poorly drained soils, which will drive the magnitude of carbon released at sites across the high-latitude tundra. These findings can help improve predictions of net carbon releases from thawing permafrost, ultimately contributing to a better understanding of the impact of Arctic warming on the global climate system.

     
    more » « less
    Free, publicly-accessible full text available June 11, 2025
  4. Abstract

    Climate change is having significant impacts on Earth’s ecosystems and carbon budgets, and in the Arctic may drive a shift from an historic carbon sink to a source. Large uncertainties in terrestrial biosphere models (TBMs) used to forecast Arctic changes demonstrate the challenges of determining the timing and extent of this possible switch. This spread in model predictions can limit the ability of TBMs to guide management and policy decisions. One of the most influential sources of model uncertainty is model parameterization. Parameter uncertainty results in part from a mismatch between available data in databases and model needs. We identify that mismatch for three TBMs, DVM-DOS-TEM, SIPNET and ED2, and four databases with information on Arctic and boreal above- and belowground traits that may be applied to model parametrization. However, focusing solely on such data gaps can introduce biases towards simple models and ignores structural model uncertainty, another main source for model uncertainty. Therefore, we develop a causal loop diagram (CLD) of the Arctic and boreal ecosystem that includes unquantified, and thus unmodeled, processes. We map model parameters to processes in the CLD and assess parameter vulnerability via the internal network structure. One important substructure, feed forward loops (FFLs), describe processes that are linked both directly and indirectly. When the model parameters are data-informed, these indirect processes might be implicitly included in the model, but if not, they have the potential to introduce significant model uncertainty. We find that the parameters describing the impact of local temperature on microbial activity are associated with a particularly high number of FFLs but are not constrained well by existing data. By employing ecological models of varying complexity, databases, and network methods, we identify the key parameters responsible for limited model accuracy. They should be prioritized for future data sampling to reduce model uncertainty.

     
    more » « less
  5. Abstract

    Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4budget. Data‐driven upscaling of CH4fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH4emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH4flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH4fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH4emissions of 146 ± 43 TgCH4 y−1for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH4 y−1) and overlaps with top‐down atmospheric inversion models (155–200 TgCH4 y−1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4fluxes has the potential to produce realistic extra‐tropical wetland CH4emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ORNLDAAC/2253).

     
    more » « less
  6. Abstract

    Boreal‐Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse gas balance of high‐latitude ecosystems. The carbon‐climate (C‐climate) feedback potential of northern high‐latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2and methane (CH4) fluxes. While CH4fluxes account for a smaller component of the C balance, the climatic impact of CH4outweighs CO2(28–34 times larger global warming potential on a 100‐year scale), highlighting the need to jointly resolve the climatic sensitivities of both CO2and CH4. Here, we jointly constrain a terrestrial biosphere model with in situ CO2and CH4flux observations at seven eddy covariance sites using a data‐model integration approach to resolve the integrated environmental controls on land‐atmosphere CO2and CH4exchanges in Alaska. Based on the combined CO2and CH4flux responses to climate variables, we find that 1970‐present climate trends will induce positive C‐climate feedback at all tundra sites, and negative C‐climate feedback at the boreal and shrub fen sites. The positive C‐climate feedback at the tundra sites is predominantly driven by increased CH4emissions while the negative C‐climate feedback at the boreal site is predominantly driven by increased CO2uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study demonstrates the need for joint observational constraints on CO2and CH4biogeochemical processes—and their associated climatic sensitivities—for resolving the sign and magnitude of high‐latitude ecosystem C‐climate feedback in the coming decades.

     
    more » « less
  7. Abstract

    The ongoing global temperature rise enhances permafrost thaw in the Arctic, allowing Pleistocene‐aged frozen soil organic matter to become available for microbial degradation and production of greenhouse gases, particularly methane. Here, we examined the extent and mechanism of anaerobic oxidation of methane (AOM) in the sediments of four interior Alaska thermokarst lakes, which formed and continue to expand as a result of ice‐rich permafrost thaw. In cores of surface (~ 1 m) lake sediments we quantified methane production (methanogenesis) and AOM rates using anaerobic incubation experiments in low (4°C) and high (16°C) temperatures. Methanogenesis rates were measured by the accumulation of methane over ~ 90 d, whereas AOM rates were measured by adding labeled‐13CH4and measuring the produced dissolved inorganic13C. Our results demonstrate that while methanogenesis was vigorous in these anoxic sediments, AOM was lower by two orders of magnitude. In almost all sediment depths and temperatures, AOM rates remained less than 2% of the methanogenesis rates. Experimental evidence indicates that the AOM is strongly related to methanogens, as the addition of a methanogens' inhibitor prevented AOM. Variety of electron acceptor additions did not stimulate AOM, and methanotrophs were scarcely detected. These observations suggest that the AOM signals in the incubation experiments might be a result of enzymatic reversibility (“back‐flux”) during CH4production, rather than thermodynamically favorable AOM. Regardless of the mechanism, the quantitative results show that near surface (< 1‐m) thermokarst sediments in interior Alaska have little to no buffer mechanisms capable of attenuating methane production in a warming climate.

     
    more » « less
  8. Abstract

    The Arctic is rapidly warming, and tundra vegetation community composition is changing from small, prostrate shrubs to taller, erect shrubs in some locations. Across much of the Arctic, the sensitivity of shrub secondary growth, as measured by growth ring width, to climate has changed with increased warming, but it is not fully understood how shrub age contributes to shifts in climate sensitivity.

    We studied Siberian alder,Alnus viridisssp.fruticosa, a large nitrogen‐fixing shrub that has responded to climate warming with northward range expansion over the last 50 years. We used serial sectioning of 26 individual shrubs and 94 cross‐sections to generate a 98‐year growth ring chronology, including one 142‐year‐old, Siberian alder in Northern Alaska. We tested how secondary growth sensitivity to climate has changed over the past century (1920–2017) and how shrub age affects climate sensitivity of alder growth through time.

    We found that over time, alder growth as expressed by the stand chronology became more sensitive to July mean monthly air temperature. Older shrubs displayed higher sensitivity to June and July temperature than younger alders. However, during the first 30 years of growth of any shrub, temperature sensitivity did not differ among individuals. In addition, the June temperature sensitivity of growth series from individual cross‐sections depended on the age of the attached shrub.

    Our results suggest that age contributes to climate sensitivity, likely through modifying internal shrub carbon budgets by changing size and reducing alder's dependence on N‐fixation over time. Older, more sensitive alder may enhance C and N‐cycling while having greater recruitment potential. Linking alder age to climate sensitivity, recruitment and total N‐inputs will enable us to better predict ecosystem carbon and nitrogen cycling in a warmer Arctic.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  9. Abstract

    We report a biophysical mechanism, termed cryocampsis (Greek cryo-, cold, + campsis, bending), that helps northern shrubs bend downward under a snow load. Subfreezing temperatures substantially increase the downward bending of cantilever-loaded branches of these shrubs, while allowing them to recover their summer elevation after thawing and becoming unloaded. This is counterintuitive, because biological materials (including branches that show cryocampsis) generally become stiffer when frozen, so should flex less, rather than more, under a given bending load. Cryocampsis involves straining of the cell walls of a branch’s xylem (wood), and depends upon the branch being hydrated. Among woody species tested, cryocampsis occurs in almost all Arctic, some boreal, only a few temperate and Mediterranean, and no tropical woody species that we have tested. It helps cold-winter climate shrubs reversibly get, and stay, below the snow surface, sheltering them from winter weather and predation hazards. This should be advantageous, because Arctic shrub bud winter mortality significantly increases if their shoots are forcibly kept above the snow surface. Our observations reveal a physically surprising behavior of biological materials at subfreezing temperatures, and a previously unrecognized mechanism of woody plant adaptation to cold-winter climates. We suggest that cryocampsis’ mechanism involves the movement of water between cell wall matrix polymers and cell lumens during freezing, analogous to that of frost-heave in soils or rocks.

     
    more » « less
  10. Abstract

    Tundra shrubs reflect climate sensitivities in their growth-ring widths, yet tissue-specific shrub chronologies are poorly studied. Further, the relative importance of regional climate patterns that exert mesoscale precipitation and temperature influences on tundra shrub growth has been explored in only a few Arctic locations. Here, we investigateBetula nanagrowth-ring chronologies from adjacent dry heath and moist tussock tundra habitats in arctic Alaska in relation to local and regional climate. Mean shrub and five tissue-specific ring width chronologies were analyzed using serial sectioning of above- and below-ground shrub organs, resulting in 30 shrubs per site with 161 and 104 cross sections from dry and moist tundra, respectively.Betula nanagrowth-ring widths in both habitats were primarily related to June air temperature (1989–2014). The strongest relationships with air temperature were found for ‘Branch2’ chronologies (dry site:r = 0.78, June 16, DOY = 167; moist site:r = 0.75, June 9, DOY = 160). Additionally, below-ground chronologies (‘Root’ and ‘Root2’) from the moist site were positively correlated with daily mean air temperatures in the previous late-June (‘Root2’ chronology:r = 0.57, pDOY = 173). Most tissue-specific chronologies exhibited the strongest correlations with daily mean air temperature during the period between 8 and 20 June. Structural equation modeling indicated that shrub growth is indirectly linked to regional Arctic and Pacific Decadal Oscillation (AO and PDO) climate indices through their relation to summer sea ice extent and air temperature. Strong dependence ofBetula nanagrowth on early growing season temperature indicates a highly coordinated allocation of resources to tissue growth, which might increase its competitive advantage over other shrub species under a rapidly changing Arctic climate.

     
    more » « less