skip to main content


Search for: All records

Award ID contains: 1904547

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 5, 2024
  2. Free, publicly-accessible full text available September 14, 2024
  3. Broadband near infrared (NIR) emission materials are of interest for various applications including non-destructive biomedical imaging. In this work, ytterbium ions (Yb 3+ ) were successfully doped into Cs 2 AgInCl 6 :Cr 3+ (CAIC:Cr 3+ ) double perovskite single crystals (DPSCs) by a facile hydrothermal method. Under 365 nm excitation, the co-doped CAIC:Cr 3+ ,Yb 3+ DPSCs showed broad NIR emission ranging from 800 to 1400 nm, which spanned the NIR-I (700–900 nm) and NIR-II (1000–1700 nm) bio-windows, with an emission band at 1000 nm and a full-width at half maximum (FWHM) of 188 nm. It is found that Yb 3+ ion doping could effectively improve the photoluminescence (PL) performance of CAIC:Cr 3+ DPSCs. Compared to the photoluminescence quantum yield (PLQY) of 22.5% for the single doped CAIC:Cr 3+ , the co-doped CAIC:Cr 3+ ,Yb 3+ DPSCs show a higher PLQY of ∼45%, which is attributed to the synergistic effect of reduced non-radiative recombination due to defect passivation and increase in crystallinity, and energy transfer (ET) of self-trapped excitons (STEs) to Cr 3+ . As a demonstration of applications, NIR pc-LEDs were fabricated by combining the as-synthesized NIR-emitting phosphor CAIC:Cr 3+ ,Yb 3+ with InGaN UV chips ( λ em = 365 nm) and used to image veins in a palm and for night vision using a NIR camera. The results suggest that the synthesized CAIC:Cr 3+ ,Yb 3+ DPSCs have great potential in biological applications. 
    more » « less