skip to main content


Title: Variation in Female Leverage: The Influence of Kinship and Market Effects on the Extent of Female Power Over Males in Verreaux’s Sifaka
Female mammals employ reproductive strategies (e.g., internal gestation) that result in power asymmetries specific to intersexual dyads. Because the number of eggs available for fertilization at any given time for most mammals is quite limited, having a fertilizable egg is potentially an important source of economic power for females. Control over mating opportunities is a source of intersexual leverage for female Verreaux’s sifaka ( Propithecus verreauxi ). We examined economic factors thought to influence the value of mating opportunities, and, thus, the extent of female leverage: kinship and market effects. Using a longitudinal dataset of agonistic interactions collected during focal animal sampling of all adult individuals in 10 social groups from 2008 to 2019, we tested the effects of relatedness, female parity, reproductive season, and adult sex ratio (population and group) on (1) the direction of submissive signaling and (2) which sex won a contested resource. While 96% of the acts of submission were directed from males toward females, females only won a third of their conflicts with males. Thus, our study has implications for evolutionary explanations of female-biased power. If female power evolved due to their greater need for food and other resources, then intersexual conflicts would be expected to result in males more consistently relinquishing control of resources. As expected, males were more likely to chatter submissively toward successful mothers, during the mating season, and when the sex ratio was male-biased. Although females generally had less power to win a conflict when their fertilizable egg was less valuable (when they were nulliparous or unsuccessful mothers or when interacting with male kin) and with an increasing female-bias in the sex ratio, this ability to win additionally was influenced by which sex initiated the conflict. Our study demonstrates that female leverage can be influenced by the supply and demand for mating opportunities, but evoking submission does not translate into winning a resource. Indeed, intersexual power is dynamic, contextual, and dependent on the individuals in the dyad.  more » « less
Award ID(s):
1719654
PAR ID:
10330725
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
10
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction Dominance relationships in which females dominate males are rare among mammals. Mechanistic hypotheses explaining the occurrence of female dominance suggest that females dominate males because (1) they are intrinsically more aggressive or less submissive than males, and/or (2) they have access to more social support than males. Methods Here, we examine the determinants of female dominance across ontogenetic development in spotted hyenas ( Crocuta crocuta ) using 30 years of detailed behavioral observations from the Mara Hyena Project to evaluate these two hypotheses. Results Among adult hyenas, we find that females spontaneously aggress at higher rates than males, whereas males spontaneously submit at higher rates than females. Once an aggressive interaction has been initiated, adult females are more likely than immigrant males to elicit submission from members of the opposite sex, and both adult natal and immigrant males are more likely than adult females to offer submission in response to an aggressive act. We also find that adult male aggressors are more likely to receive social support than are adult female aggressors, and that both adult natal and immigrant males are 2–3 times more likely to receive support when attacking a female than when attacking another male. Across all age classes, females are more likely than males to be targets of aggressive acts that occur with support. Further, receiving social support does slightly help immigrant males elicit submission from adult females compared to immigrant males acting alone, and it also helps females elicit submission from other females. However, adult females can dominate immigrant males with or without support far more often than immigrant males can dominate females, even when the immigrants are supported against females. Discussion Overall, we find evidence for both mechanisms hypothesized to mediate female dominance in this species: (1) male and female hyenas clearly differ in their aggressive and submissive tendencies, and (2) realized social support plays an important role in shaping dominance relationships within a clan. Nevertheless, our results suggest that social support alone cannot explain sex-biased dominance in spotted hyenas. Although realized social support can certainly influence fight outcomes among females, adult females can easily dominate immigrant males without any support at all. 
    more » « less
  2. Abstract

    Sexual conflict over the indirect benefits of mate choice may arise when traits in one sex limit the ability of the other sex to freely choose mates but when these coercive traits are not necessarily directly harmful (i.e. forced fertilizationper se). Although we might hypothesize that females can evolve resistance in order to retain the indirect, genetic benefits (reflected in offspring attractiveness) of mating with attractive males, up to now it has been difficult to evaluate potential underlying mechanisms. Traditional theoretical approaches do not usually conceptually distinguish between female preference for male mating display and female resistance to forced fertilization, yet sexual conflict over indirect benefits implies the simultaneous action of all of these traits. Here, we present an integrative theoretical framework that draws together concepts from both sexual selection and sexual conflict traditions, allowing for the simultaneous coevolution of displays and preferences, and of coercion and resistance. We demonstrate that it is possible for resistance to coercion to evolve in the absence of direct costs of mating to preserve the indirect benefits of mate choice. We find that resistance traits that improve the efficacy of female mating preference can evolve as long as females are able to attain some indirect benefits of mating with attractive males, even when both attractive and unattractive males can coerce. These results reveal new evolutionary outcomes that were not predicted by prior theories of indirect benefits or sexual conflict.

     
    more » « less
  3. Abstract

    Sex differences in animal coloration often result from sex‐dependent regulatory mechanisms. Still, some species exhibit incomplete sexual dimorphism as females carry a rudimentary version of a costly male trait, leading to intralocus sexual conflict. The underlying physiology and condition dependence of these traits can inform why such conflicts remain unresolved. In eastern fence lizards (Sceloporus undulatus), blue iridophore badges are found in males and females, but melanin pigmentation underneath and surrounding badges is male‐exclusive. We track color saturation and area of badges across sexual maturity, and their relationship to individual quality (body condition and immunocompetence) and relevant hormones (testosterone and corticosterone). Saturation and testosterone were positively correlated in both sexes, but hormone and trait had little overlap between males and females. Saturation was correlated with body condition and immunocompetence in males but not in females. Co‐regulation by androgens may have released females from resource allocation costs of color saturation, even when in high condition. Badge area was independent of testosterone, but associated with low corticosterone in females, indicating that a nonsex hormone underlies incomplete sexual dimorphism. Given the evidence in this species for female reproductive costs associated with ornamentation, this sex‐nonspecific regulation of an honest signal may underlie intralocus sexual conflict.

     
    more » « less
  4. Drosophila melanogasterfemales experience a large shift in energy homeostasis after mating to compensate for nutrient investment in egg production. To cope with this change in metabolism, mated females undergo widespread physiological and behavioral changes, including increased food intake and altered digestive processes. The mechanisms by which the female digestive system responds to mating remain poorly characterized. Here, we demonstrate that the seminal fluid protein Sex Peptide (SP) is a key modulator of female post-mating midgut growth and gene expression. SP is both necessary and sufficient to trigger post-mating midgut growth in females under normal nutrient conditions, and likely acting via its receptor, Sex Peptide Receptor (SPR). Moreover, SP is responsible for almost the totality of midgut transcriptomic changes following mating, including up-regulation of protein and lipid metabolism genes and down-regulation of carbohydrate metabolism genes. These changes in metabolism may help supply the female with the nutrients required to sustain egg production. Thus, we report a role for SP in altering female physiology to enhance reproductive output: Namely, SP triggers the switch from virgin to mated midgut state.

     
    more » « less
  5. Abstract

    Both individual and group behavior can influence individual fitness, but multilevel selection is rarely quantified on social behaviors. Social networks provide a unique opportunity to study multilevel selection on social behaviors, as they describe complex social traits and patterns of interaction at both the individual and group levels. In this study, we used contextual analysis to measure the consequences of both individual network position and group network structure on individual fitness in experimental populations of forked fungus beetles (Bolitotherus cornutus) with two different resource distributions. We found that males with high individual connectivity (strength) and centrality (betweenness) had higher mating success. However, group network structure did not influence their mating success. Conversely, we found that individual network position had no effect on female reproductive success but that females in populations with many social interactions experienced lower reproductive success. The strength of individual-level selection in males and group-level selection in females intensified when resources were clumped together, showing that habitat structure influences multilevel selection. Individual and emergent group social behavior both influence variation in components of individual fitness, but impact the male mating success and female reproductive success differently, setting up intersexual conflicts over patterns of social interactions at multiple levels.

     
    more » « less