In this paper, we address the visibility-based target tracking problem in which a mobile observer moving along a p-route, which we define as a fixed path for target tracking, tries to keep a mobile target in its field-of-view. By drawing a connection to the watchman's route problem, we find a set of conditions that must be satisfied by the p-route. Then we propose a metric for tracking to estimate a sufficient speed for the observer given the geometry of the environment. We show that the problem of finding the p-route on which the observer requires minimum speed is computationally intractable. We present a technique to find a p-route on which the observer needs at most twice the minimum speed to track the intruder and a reactive motion strategy for the observer.
more »
« less
ASTRO: A System for Off-grid Networked Drone Sensing Missions
We present the design, implementation, and experimental evaluation of ASTRO, a modular end-to-end system for distributed sensing missions with autonomous networked drones. We introduce the fundamental system architecture features that enable agnostic sensing missions on top of the ASTRO drones. We demonstrate the key principles of ASTRO by using on-board software-defined radios to find and track a mobile radio target. We show how simple distributed on-board machine learning methods can be used to find and track a mobile target, even if all drones lose contact with a ground control. Also, we show that ASTRO is able to find the target even if it is hiding under a three-ton concrete slab, representing a highly irregular propagation environment. Our findings reveal that, despite no prior training and noisy sensory measurements, ASTRO drones are able to learn the propagation environment in the scale of seconds and localize a target with a mean accuracy of 8 m. Moreover, ASTRO drones are able to track the target with relatively constant error over time, even as it moves at a speed close to the maximum drone speed.
more »
« less
- Award ID(s):
- 1801865
- PAR ID:
- 10330784
- Date Published:
- Journal Name:
- ACM Transactions on Internet of Things
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2691-1914
- Page Range / eLocation ID:
- 1 to 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As the drone becomes widespread in numerous crucial applications with many powerful functionalities (e.g., reconnaissance and mechanical trigger), there are increasing cases related to misused drones for unethical even criminal activities. Therefore, it is of paramount importance to identify these malicious drones and track their origins using digital forensics. Traditional drone identification techniques for forensics (e.g., RF communication, ID landmarks using a camera, etc.) require high compliance of drones. However, malicious drones will not cooperate or even spoof these identification techniques. Therefore, we present an exploration for a reliable and passive identification approach based on unique hardware traits in drones directly (e.g., analogous to the fingerprint and iris in humans) for forensics purposes. Specifically, we investigate and model the behavior of the parasitic electronic elements under RF interrogation, a particular passive parasitic response modulated by an electronic system on drones, which is distinctive and unlikely to counterfeit. Based on this theory, we design and implement DroneTrace, an end-to-end reliable and passive identification system toward digital drone forensics. DroneTrace comprises a cost-effective millimeter-wave (mmWave) probe, a software framework to extract and process parasitic responses, and a customized deep neural network (DNN)-based algorithm to analyze and identify drones. We evaluate the performance of DroneTrace with 36 commodity drones. Results show that DroneTrace can identify drones with the accuracy of over 99% and an equal error rate (EER) of 0.009, under a 0.1-second sensing time budget. Moreover, we test the reliability, robustness, and performance variation under a set of real-world circumstances, where DroneTrace maintains accuracy of over 98%. DroneTrace is resilient to various attacks and maintains functionality. At its best, DroneTrace has the capacity to identify individual drones at the scale of 104 with less than 5% error.more » « less
-
Drone simulators are often used to reduce training costs and prepare operators for various ad-hoc scenarios, as well as to test the quality of algorithmic and communication aspects in collaborative scenarios. An important aspect of drone missions in simulated (as well as real life) environments is the operational lifetime of a given drone, in both solo and collaborative fleet settings. Its importance stems from the fact that the capacity of the on-board batteries in untethered (i.e., free-flying) drones determines the range and/or the length of the trajectory that a drone can travel in the course of its surveilance or delivery missions. Most of the existing simulators incorporate some kind of a consumption model based on different parameters of the drone and its flight trajectory. However, to our knowledge, the existing simulators are not capable of incorporating data obtained from actual physical measurements/observations into the consumption model. In this work, we take a first step towards enabling the (users of) drones simulator to incorporate the speed and direction of the wind into the model and monitor its impact on the battery consumption as the direction of the flight changes relative to the wind. We have also developed a proof-of-concept implementation with DJI Mavic 3 and Parrot ANAFI drones.more » « less
-
With the rapid development of technology and the proliferation of uncrewed aerial systems (UAS), there is an immediate need for security solutions. Toward this end, we propose the use of a multi-robot system for autonomous and cooperative counter-UAS missions. In this paper, we present the design of the hardware and software components of different complementary robotic platforms: a mobile uncrewed ground vehicle (UGV) equipped with a LiDAR sensor, an uncrewed aerial vehicle (UAV) with a gimbal-mounted stereo camera for air-to-air inspections, and a UAV with a capture mechanism equipped with radars and camera. Our proposed system features 1) scalability to larger areas due to the distributed approach and online processing, 2) long-term cooperative missions, and 3) complementary multimodal perception for the detection of multirotor UAVs. In field experiments, we demonstrate the integration of all subsystems in accomplishing a counter-UAS task within an unstructured environment. The obtained results confirm the promising direction of using multi-robot and multi-modal systems for C-UAS.more » « less
-
In this article, we first investigate the quality of aerial air pollution measurements and characterize the main error sources of drone-mounted gas sensors. To that end, we build ASTRO+, an aerial-ground pollution monitoring platform, and use it to collect a comprehensive dataset of both aerial and reference air pollution measurements. We show that the dynamic airflow caused by drones affects temperature and humidity levels of the ambient air, which then affect the measurement quality of gas sensors. Then, in the second part of this article, we leverage the effects of weather conditions on pollution measurements’ quality in order to design an unmanned aerial vehicle mission planning algorithm that adapts the trajectory of the drones while taking into account the quality of aerial measurements. We evaluate our mission planning approach based on a Volatile Organic Compound pollution dataset and show a high-performance improvement that is maintained even when pollution dynamics are high.more » « less
An official website of the United States government

