Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this article, we first investigate the quality of aerial air pollution measurements and characterize the main error sources of drone-mounted gas sensors. To that end, we build ASTRO+, an aerial-ground pollution monitoring platform, and use it to collect a comprehensive dataset of both aerial and reference air pollution measurements. We show that the dynamic airflow caused by drones affects temperature and humidity levels of the ambient air, which then affect the measurement quality of gas sensors. Then, in the second part of this article, we leverage the effects of weather conditions on pollution measurements’ quality in order to design an unmanned aerial vehicle mission planning algorithm that adapts the trajectory of the drones while taking into account the quality of aerial measurements. We evaluate our mission planning approach based on a Volatile Organic Compound pollution dataset and show a high-performance improvement that is maintained even when pollution dynamics are high.more » « less
-
We present the design, implementation, and experimental evaluation of ASTRO, a modular end-to-end system for distributed sensing missions with autonomous networked drones. We introduce the fundamental system architecture features that enable agnostic sensing missions on top of the ASTRO drones. We demonstrate the key principles of ASTRO by using on-board software-defined radios to find and track a mobile radio target. We show how simple distributed on-board machine learning methods can be used to find and track a mobile target, even if all drones lose contact with a ground control. Also, we show that ASTRO is able to find the target even if it is hiding under a three-ton concrete slab, representing a highly irregular propagation environment. Our findings reveal that, despite no prior training and noisy sensory measurements, ASTRO drones are able to learn the propagation environment in the scale of seconds and localize a target with a mean accuracy of 8 m. Moreover, ASTRO drones are able to track the target with relatively constant error over time, even as it moves at a speed close to the maximum drone speed.more » « less