Neutron stars in astrophysical binary systems represent exciting sources for multimessenger astrophysics. A potential source of electromagnetic transients from compact binary systems is the neutron star ocean, the external fluid layer encasing a neutron star. We present a groundwork study into tidal waves in neutron star oceans and their consequences. Specifically, we investigate how oscillation modes in neutron star oceans can be tidally excited during compact binary inspirals and parabolic encounters. We find that neutron star oceans can sustain tidal waves with frequencies between 0.01 and 20 Hz. Our results suggest that tidally resonant neutron star ocean waves may serve as a neverbefore studied source of precursor electromagnetic emission prior to neutron star–black hole and binary neutron star mergers. If accompanied by electromagnetic flares, tidally resonant neutron star ocean waves, whose energy budget can reach 1046 erg, may serve as early warning signs (≳1 min before merger) for compact binary mergers. Similarly, excited ocean tidal waves will coincide with neutron star parabolic encounters. Depending on the neutron star ocean model and a flare emission scenario, tidally resonant ocean flares may be detectable by Fermi and Nuclear Spectroscopic Telescope Array (NuSTAR) out to ≳100 Mpc with detection rates as high as ∼7 yr−1 formore »
 Publication Date:
 NSFPAR ID:
 10330979
 Journal Name:
 Classical and Quantum Gravity
 Volume:
 38
 Issue:
 13
 Page Range or eLocationID:
 135008
 ISSN:
 02649381
 Sponsoring Org:
 National Science Foundation
More Like this

ABSTRACT 
Underwater explosion poses a significant threat to the structural integrity of ocean vehicles and platforms. Accurate prediction of the dynamic loads from an explosion and the resulting structural response is crucial to ensuring safety without overconservative design. When the distance between the explosive charge and the structure is relatively small (i.e., nearfield explosion), the dynamics of the gaseous explosion product, i.e., the “bubble”, comes into play, rendering a multiphysics problem that features the interaction of the bubble, the surrounding liquid water, and the solid structure. The problem is highly nonlinear, as it involves shock waves, large deformation, yielding, contact, and possibly fracture. This paper investigates the twoway interaction between the cyclic expansion and collapse of an explosion bubble and the deformation of a thinwalled elastoplastic cylindrical shell in its vicinity. Intuitively, when a shock wave impinges on a thin cylindrical shell, the shell would collapse in the direction of shock propagation. However, some recent laboratory experiments have shown that under certain conditions the shell collapsed in a counterintuitive mode in which the direction of collapse is perpendicular to that of shock propagation. In other words, the nearest point on the structural surface moved towards the explosion charge, despite being impactedmore »

Neutron stars (NSs) are extraordinary not only because they are the densest form of matter in the visible Universe but also because they can generate magnetic fields ten orders of magnitude larger than those currently constructed on earth. The combination of extreme gravity with the enormous electromagnetic (EM) fields gives rise to spectacular phenomena like those observed on August 2017 with the merger of a binary neutron star system, an event that generated a gravitational wave (GW) signal, a short γray burst (sGRB), and a kilonova. This event serves as the highlight so far of the era of multimessenger astronomy. In this review, we present the current state of our theoretical understanding of compact binary mergers containing NSs as gleaned from the latest general relativistic magnetohydrodynamic simulations. Such mergers can lead to events like the one on August 2017, GW170817, and its EM counterparts, GRB 170817 and AT 2017gfo. In addition to exploring the GW emission from binary black holeneutron star and neutron starneutron star mergers, we also focus on their counterpart EM signals. In particular, we are interested in identifying the conditions under which a relativistic jet can be launched following these mergers. Such a jet is an essentialmore »

Abstract Both the core collapse of rotating massive stars, and the coalescence of neutron star (NS) binaries result in the formation of a hot, differentially rotating NS remnant. The timescales over which differential rotation is removed by internal angularmomentum transport processes (
viscosity ) have key implications for the remnant’s longterm stability and the NS equation of state (EOS). Guided by a nonrotating model of a cooling protoNS, we estimate the dominant sources of viscosity using an externally imposed angularvelocity profile Ω(r ). Although the magnetorotational instability provides the dominant source of effective viscosity at large radii, convection and/or the Tayler–Spruit dynamo dominate in the core of merger remnants whered Ω/dr ≥ 0. Furthermore, the viscous timescale in the remnant core is sufficiently short that solidbody rotation will be enforced faster than matter is accreted from rotationally supported outer layers. Guided by these results, we develop a toy model for how the merger remnant core grows in mass and angular momentum due to accretion. We find that merger remnants with sufficiently massive and slowly rotating initial cores may collapse to black holes via envelope accretion, even when the total remnant mass is less than the usually considered threshold ≈1.2M _{TOV}for forming a stable solidbody rotating NSmore » 
Inspired by the recent realization of a twodimensional (2D) chiral fluid as an active monolayer droplet moving atop a 3D Stokesian fluid, we formulate mathematically its freeboundary dynamics. The surface droplet is described as a general 2D linear, incompressible and isotropic fluid, having a viscous shear stress, an active chiral driving stress and a Hall stress allowed by the lack of timereversal symmetry. The droplet interacts with itself through its driven internal mechanics and by driving flows in the underlying 3D Stokes phase. We pose the dynamics as the solution to a singular integral–differential equation, over the droplet surface, using the mapping from surface stress to surface velocity for the 3D Stokes equations. Specializing to the case of axisymmetric droplets, exact representations for the chiral surface flow are given in terms of solutions to a singular integral equation, solved using both analytical and numerical techniques. For a discshaped monolayer, we additionally employ a semianalytical solution that hinges on an orthogonal basis of Bessel functions and allows for efficient computation of the monolayer velocity field, which ranges from a nearly solidbody rotation to a unidirectional edge current, depending on the subphase depth and the Saffman–Delbrück length. Except in the nearwall limit,more »