skip to main content


Title: Promoting equity in the peer review process of journal publication
While there is evidence to support the existence of identity-based disparities, inequities, and biases in the academic journal peer-review process, little research supports the presence of this bias in the peer-review process for academic journals in science education. Through an analysis of six leading journals in science education, we aimed to investigate the extent to which diversity, equity, and inclusion (DEI), as well as the presence of bias in the peer-review process, are addressed by these journals. We analyzed trends in the gender/sex, geographical affiliation, race/ethnicity, and the presence of equity-centered research focus for members of these journals' editors and editorial boards. We found that although gender/sex is well-balanced in these journals' editors and editorial boards, they are typically North American centric, and White individuals are overwhelmingly represented. Four journals had a quarter or more of individuals who pursue equity-centered research. Only two journals provided detailed information on how manuscripts are reviewed in their author submission guidelines. All used a double-blind approach to peer-review. One of the journals includes an explicit position on DEI. Based on the analyses and reflections on our own experiences, we recommend science education journals consider ways to probe whether bias does exist in their peer-review process, diversify their board to be more inclusive of scholars from communities historically marginalized, and move to a triple-blind approach to their peer-review process as mechanisms to mitigate bias in the journal peer review.  more » « less
Award ID(s):
2029956
NSF-PAR ID:
10331191
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Science Education
Volume:
106
Issue:
5
ISSN:
0036-8326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Across a broad range of disciplines, research has found that inequity is systemic in the journal review process. Collectively, however, this study does not specifically examine racial inequity. Moreover, literature on the peer review process in science education, in particular, does not foreground equity as a subject of study. The present study aims to address this void by examining racial equity in the peer review process with a specific focus on journals in science education. Data are collected from lead editors of major science education journals through the form of interviews, focus groups, and critical arts-based methods. The two research questions driving data collection are (a) In what ways does the science education journal peer review process promote racial equity? and (b) How are science education journal editors’ perceptions of racial inequity reflected in the peer review process? McNair and colleagues’ racial equity framework informs the explorations of journal review in science education from the lead editors’ perspectives. From our findings, we offer four suggestions for moving toward greater racial equity in the science education peer review process. 
    more » « less
  2. ABSTRACT CONTEXT The peer review process plays a critical role in ensuring the quality of work published within a field and advancing the knowledge within the research community. However, for many members of the community, the process of peer review largely remains a black box to many scholars, especially those with less experience within the community. Therefore, there is a need to illuminate the peer review process for the research community. PURPOSE OR GOAL To more transparently reveal the contents of the black box around the peer review process, we interviewed editors (associate and deputy editors) for the Journal of Engineering Education (JEE) to provide editor perspectives on the overall peer review process. The goal of this paper is to clearly articulate the behind-the-scenes processes of peer review as well as the expectations and perceptions of the editors with respect to publishing within JEE. By bringing these processes to light, we hope that more members of the field will be aware of the overall process and the associated expectations for contributing to the field. APPROACH OR METHODOLOGY/METHODS To meet the goals of this study, we conducted semi-structured interviews with six editors of JEE who worked in the field of engineering education research (EER), as a part of a larger project exploring the boundaries of the field as expressed within the peer reviews process. The interviewer from the research team followed a protocol but also asked additional questions to elicit more details in some cases. The interviews were recorded, transcribed, and thematically coded using an open-coding process. ACTUAL OR ANTICIPATED OUTCOMES Based on the analysis of the editor interviews, we present three critical aspects of the peer review process: the types of editors, the process that editors typically conduct to identify reviewers, and the types of decisions through the process. Additionally, we highlight considerations and advice from the editors to help members of the EER community develop. CONCLUSIONS/RECOMMENDATIONS/SUMMARY The current study makes the editors’ perspectives and decision-making processes more explicit to readers. These decision-making processes are full of careful considerations and also challenges. By doing so, we hope to help the members of the EER community gain a better understanding of what is going on backstage of the peer review process. 
    more » « less
  3. Abstract Background

    The lack of racial diversity in science, technology, engineering, and mathematics (STEM) disciplines is perhaps one of the most challenging issues in the United States higher education system. The issue is not only concerning diverse students, but also diverse faculty members. One important contributing factor is the faculty hiring process. To make progress toward equity in hiring decisions, it is necessary to better understand how applicants are considered and evaluated. In this paper, we describe and present our study based on a survey of current STEM faculty members and administrators who examined applicant qualifications and characteristics in STEM faculty hiring decisions.

    Results

    There are three key findings of the present research. First, we found that faculty members placed different levels of importance on characteristics and qualifications for tenure track hiring and non-tenure track hiring. For example, items related to research were more important when evaluating tenure track applicants, whereas items related to teaching and diversity were more important when evaluating non-tenure track applicants. Second, faculty members’ institutional classification, position, and personal identities (e.g., gender, race/ethnicity) had an impact on their evaluation criteria. For instance, we found men considered some diversity-related items more important than women. Third, faculty members rated the importance of qualifications with diversity, equity, and inclusion (DEI)-related constructs significantly lower than qualifications that did not specify DEI-related constructs, and this trend held for both tenure track and non-tenure track faculty hiring.

    Conclusions

    This study was an attempt to address the issue of diversity in STEM faculty hiring at institutions of higher education by examining how applicant characteristics are considered and evaluated in faculty hiring practices. Emphasizing research reputation and postdoctoral reputation while neglecting institutional diversity and equitable and inclusive teaching, research, and service stunt progress toward racial diversity because biases—both implicit and explicit, both positive and negative—still exist. Our results were consistent with research on bias in recruitment, revealing that affinity bias, confirmation bias, and halo bias exist in the faculty hiring process. These biases contribute to inequities in hiring, and need to be addressed before we can reach, sustain, and grow desired levels of diversity.

     
    more » « less
  4. In this essay, I explore some of the insights provided in a set of three manuscripts that focus on centering equity in peer review, authored by Bancroft, Ryoo and Miles, Nkrumah and Mutegi, and Marshall and Salter. I consider various aspects of their arguments, highlighting implications for the procedures and norms of journals and funding organizations and questions for further consideration. Drawing on their findings and analyses, I discuss various recommendations, such as the need to change the rules and norms of peer review to be more equitable, to ensure that reviews are free from race, ethnicity, gender, and other kinds of identity-related biases, to work towards equitable distribution of the resources, such as advising, mentoring, and valuable feedback, that support fair reviewing, and to establish criteria and rubrics that support research that is conducted in collaboration with communities marginalized in science education. In addition, I raise issues for further consideration, including the evolving relationship between “equity” and “merit” with regard to peer review and the need for centering equity in ways that allow for discussion, debate, and development of the field. 
    more » « less
  5. The importance of diversifying the national STEM workforce is well-established in the literature (Marrongelle, 2018). This need extends to graduate education in the STEM fields, leading N.C. A&T to invest considerably in graduate education and wraparound support initiatives that help graduate students build science identity and competencies for careers both within and beyond academia. The NSF-funded Bridges to the Doctorate project will integrate culturally reflective mentoring and professional development specifically designed for Black, Latinx, and Native American Ph.D. students. This holistic, graduate student development model includes academic and professional skill-building for STEM careers alongside targeted support for pursuing fellowship opportunities. This paper discusses the planned mentoring approach for the aforementioned program and previous approaches to mentoring graduate students used at N.C. A&T. The BD Fellows program will support formal and informal mentoring relationships, as mentoring contributes towards retention in STEM graduate programs (Ragins, 2007). BD Fellows will participate in monthly one-hour seminars on how to identify, establish, and maintain informal mentoring relationships (Schwartz et al., 2018; Parnes et al., 2020), while STEM faculty will attend seminars on leveraging their social networks as vital sources of mentorship for the BD Fellows. Using a multi-pronged collaborative approach, this model integrates the evidence-based domains of self-efficacy (Laurencelle & Scanlan, 2018; Lent et al., 1994; Lent et al., 2008), science/research identity (Lent et al., 2015; Zimmerman, 2000), and social cognitive career theory (Lent et al., 2005; Lent and Brown, 2006) to recruit, enroll, and graduate LSAMP Fellows with STEM doctoral degrees. Guided by the theories, the following questions will be addressed: (1) To what extent is culturally reflective mentoring identified as a critical driver of B2D Fellows’ success? (2) To what extent are the program’s training components fostering increases in B2D Fellow’s self-efficacy, competency, and science identity? (3) What is the strength of the correlation between participation in the program training components, mentoring activities, and persistence in graduate school? (4) To what extent does the perceived importance of self-efficacy, competency, and science identity differ by race/ethnicity and gender? These data will be analyzed using both formative and summative assessments of program outcomes. Quantitative data will include pre-, post-, and exit surveys. Qualitative data will assess the impact of mentoring and program support. This study will be guided by established protocols that have been approved by the N.C. A&T IRB. It is anticipated that our BD Fellows program will significantly impact the retention and graduation rates of underrepresented minority STEM graduate students in our doctoral programs, thus producing a diverse workforce of STEM professionals. Materials from the program recruiting cycle, mentoring workshops, and the structured fellowship application process will be disseminated freely to other LSAMP and minority-serving institutions across the country. Strategies and outcomes of this project will be published in peer-reviewed journals and shared in conference proceedings. 
    more » « less