skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Modeling the effects of Aedes aegypti’s larval environment on adult body mass at emergence
Mosquitoes vector harmful pathogens that infect millions of people every year, and developing approaches to effectively control mosquitoes is a topic of great interest. However, the success of many control measures is highly dependent upon ecological, physiological, and life history traits of mosquito species. The behavior of mosquitoes and their potential to vector pathogens can also be impacted by these traits. One trait of interest is mosquito body mass, which depends upon many factors associated with the environment in which juvenile mosquitoes develop. Our experiments examined the impact of larval density on the body mass of Aedes aegypti mosquitoes, which are important vectors of dengue, Zika, yellow fever, and other pathogens. To investigate the interactions between the larval environment and mosquito body mass, we built a discrete time mathematical model that incorporates body mass, larval density, and food availability and fit the model to our experimental data. We considered three categories of model complexity informed by data, and selected the best model within each category using Akaike’s Information Criterion. We found that the larval environment is an important determinant of the body mass of mosquitoes upon emergence. Furthermore, we found that larval density has greater impact on body mass of adults at emergence than on development time, and that inclusion of density dependence in the survival of female aquatic stages in models is important. We discuss the implications of our results for the control of Aedes mosquitoes and on their potential to spread disease.  more » « less
Award ID(s):
1853495
PAR ID:
10331201
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Perkins, Alex
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
17
Issue:
11
ISSN:
1553-7358
Page Range / eLocation ID:
e1009102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Young, Vincent B. (Ed.)
    ABSTRACT Mosquito larvae encounter diverse assemblages of bacteria (i.e., “microbiota”) and fungi in the aquatic environments that they develop in. However, while a number of studies have addressed the diversity and function of microbiota in mosquito life history, relatively little is known about mosquito-fungus interactions outside several key fungal entomopathogens. In this study, we used high-throughput sequencing of internal transcribed spacer 2 (ITS2) metabarcode markers to provide the first simultaneous characterization of the fungal communities in field-collected Aedes albopictus larvae and their associated aquatic environments. Our results reveal unprecedented variation in fungal communities among adjacent but discrete larval breeding habitats. Our results also reveal a distinct fungal community assembly in the mosquito gut versus other tissues, with gut-associated fungal communities being most similar to those present in the environment where larvae feed. Altogether, our results identify the environment as the dominant factor shaping the fungal community associated with mosquito larvae, with no evidence of environmental filtering by the gut. These results also identify mosquito feeding behavior and fungal mode of nutrition as potential drivers of tissue-specific fungal community assembly after environmental acquisition. IMPORTANCE The Asian tiger mosquito, Aedes albopictus , is the dominant mosquito species in the United States and an important vector of arboviruses of major public health concern. One aspect of mosquito control to curb mosquito-borne diseases has been the use of biological control agents such as fungal entomopathogens. Recent studies also demonstrate the impact of mosquito-associated microbial communities on various mosquito traits, including vector competence. However, while much research attention has been dedicated to understanding the diversity and function of mosquito-associated bacterial communities, relatively little is known about mosquito-associated fungal communities. A better understanding of the factors that drive fungal community diversity and assembly in mosquitoes will be essential for future efforts to target mosquito-associated bacteria and fungi for mosquito and mosquito-borne disease control. 
    more » « less
  2. null (Ed.)
    Abstract Background Mosquitoes are vectors for diseases such as dengue, malaria and La Crosse virus that significantly impact the human population. When multiple mosquito species are present, the competition between species may alter population dynamics as well as disease spread. Two mosquito species, Aedes albopictus and Aedes triseriatus , both inhabit areas where La Crosse virus is found. Infection of Aedes albopictus by the parasite Ascogregarina taiwanensis and Aedes triseriatus by the parasite Ascogregarina barretti can decrease a mosquito’s fitness, respectively. In particular, the decrease in fitness of Aedes albopictus occurs through the impact of Ascogregarina taiwanensis on female fecundity, larval development rate, and larval mortality and may impact its initial competitive advantage over Aedes triseriatus during invasion. Methods We examine the effects of parasitism of gregarine parasites on Aedes albopictus and triseriatus population dynamics and competition with a focus on when Aedes albopictus is new to an area. We build a compartmental model including competition between Aedes albopictus and triseriatus while under parasitism of the gregarine parasites. Using parameters based on the literature, we simulate the dynamics and analyze the equilibrium population proportion of the two species. We consider the presence of both parasites and potential dilution effects. Results We show that increased levels of parasitism in Aedes albopictus will decrease the initial competitive advantage of the species over Aedes triseriatus and increase the survivorship of Aedes triseriatus . We find Aedes albopictus is better able to invade when there is more extreme parasitism of Aedes triseriatus . Furthermore, although the transient dynamics differ, dilution of the parasite density through uptake by both species does not alter the equilibrium population sizes of either species. Conclusions Mosquito population dynamics are affected by many factors, such as abiotic factors (e.g. temperature and humidity) and competition between mosquito species. This is especially true when multiple mosquito species are vying to live in the same area. Knowledge of how population dynamics are affected by gregarine parasites among competing species can inform future mosquito control efforts and help prevent the spread of vector-borne disease. 
    more » « less
  3. Abstract Mosquitoes pose an increasing risk in urban landscapes, where spatial heterogeneity in juvenile habitat can influence fine-scale differences in mosquito density and biting activity. We examine how differences in juvenile mosquito habitat along a spectrum of urban infrastructure abandonment can influence the adult body size of the invasive tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae). Adult Ae. albopictus were collected across 3 yr (2015–2017) from residential blocks in Baltimore, MD, that varied in abandonment level, defined by the proportion of houses with boarded-up doors. We show that female Ae. albopictus collected from sites with higher abandonment were significantly larger than those collected from higher income, low abandonment blocks. Heterogeneity in mosquito body size, including wing length, has been shown to reflect differences in important traits, including longevity and vector competence. The present work demonstrates that heterogeneity in female size may reflect juvenile habitat variability across the spatial scales most relevant to adult Aedes dispersal and human exposure risk in urban landscapes. Previous work has shown that failure to manage abandonment and waste issues in impoverished neighborhoods supports greater mosquito production, and this study suggests that mosquitoes in these same neighborhoods could live longer, produce more eggs, and have different vector potential. 
    more » « less
  4. Bartholomay, Lyric C. (Ed.)
    Mosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito studies control for host genotype and environmental conditions, the impact of microbiota variation on phenotypic outcomes of mosquitoes is often unaccounted for. The inability to conduct reproducible intra- and inter-laboratory studies of mosquito-microbiota interactions has also greatly limited our ability to identify microbial targets for mosquito-borne disease control. Here, we developed an approach to isolate and cryopreserve bacterial communities derived from lab and field-based larval rearing environments of the yellow fever mosquito Aedes aegypti –a primary vector of dengue, Zika, and chikungunya viruses. We then validated the use of our approach to generate experimental microcosms colonized by standardized lab- and field-derived bacterial communities. Our results overall reveal minimal effects of cryopreservation on the recovery of both lab- and field-derived bacteria when directly compared with isolation from non-cryopreserved fresh material. Our results also reveal improved reproducibility of bacterial communities in replicate microcosms generated using cryopreserved stocks over fresh material. Communities in replicate microcosms further captured the majority of total bacterial diversity present in both lab- and field-based larval environments, although the relative richness of recovered taxa as compared to non-recovered taxa was substantially lower in microcosms containing field-derived bacteria. Altogether, these results provide a critical next step toward the standardization of mosquito studies to include larval rearing environments colonized by defined microbial communities. They also lay the foundation for long-term studies of mosquito-microbe interactions and the identification and manipulation of taxa with potential to reduce mosquito vectorial capacity. 
    more » « less
  5. Mosquito density plays an important role in the spread of mosquito-borne diseases such as dengue and Zika. While it remains very challenging to estimate the density of mosquitoes, modelers have tried different methods to represent it in mathematical models. The goal of this paper is to investigate the various ways mosquito density has been quantified, as well as to propose a dynamical system model that includes the details of mosquito life stages leading to the adult population. We first discuss the mosquito traits involved in determining mosquito density, focusing on those that are temperature dependent. We evaluate different forms of models for mosquito densities based on these traits and explore their dynamics as temperature varies. Finally, we compare the predictions of the models to observations of Aedes aegypti abundances over time in Vitòria, Brazil. Our results indicate that the four models exhibit qualitatively and quantitatively different behaviors when forced by temperature, but that all seem reasonably consistent with observed abundance data. 
    more » « less