skip to main content

Title: Aedes albopictus Body Size Differs Across Neighborhoods With Varying Infrastructural Abandonment
Abstract Mosquitoes pose an increasing risk in urban landscapes, where spatial heterogeneity in juvenile habitat can influence fine-scale differences in mosquito density and biting activity. We examine how differences in juvenile mosquito habitat along a spectrum of urban infrastructure abandonment can influence the adult body size of the invasive tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae). Adult Ae. albopictus were collected across 3 yr (2015–2017) from residential blocks in Baltimore, MD, that varied in abandonment level, defined by the proportion of houses with boarded-up doors. We show that female Ae. albopictus collected from sites with higher abandonment were significantly larger than those collected from higher income, low abandonment blocks. Heterogeneity in mosquito body size, including wing length, has been shown to reflect differences in important traits, including longevity and vector competence. The present work demonstrates that heterogeneity in female size may reflect juvenile habitat variability across the spatial scales most relevant to adult Aedes dispersal and human exposure risk in urban landscapes. Previous work has shown that failure to manage abandonment and waste issues in impoverished neighborhoods supports greater mosquito production, and this study suggests that mosquitoes in these same neighborhoods could live longer, produce more eggs, and have different more » vector potential. « less
Authors:
; ; ;
Award ID(s):
1027188 1855277 1637661
Publication Date:
NSF-PAR ID:
10125128
Journal Name:
Journal of Medical Entomology
ISSN:
0022-2585
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    TheAedesaegyptimosquito is a vector of several viruses including dengue, chikungunya, zika, and yellow fever. Vector surveillance and control are the primary methods used for the control and prevention of disease transmission; however, public health institutions largely rely on measures of population abundance as a trigger for initiating control activities. Previous research found evidence that at the northern edge ofAe.aegypti’s geographic range, survival, rather than abundance, is likely to be the factor limiting disease transmission. In this study, we sought to test the utility of using body size as an entomological index to surveil changes in the age structure of field-collected femaleAedesaegypti.

    Methods

    We collected femaleAe.aegyptimosquitoes using BG sentinel traps in three cities at the northern edge of their geographic range. Collections took place during their active season over the course of 3 years. Female wing size was measured as an estimate of body size, and reproductive status was characterized by examining ovary tracheation. Chronological age was determined by measuring transcript abundance of an age-dependent gene. These data were then tested with female abundance at each site and weather data from the estimated larval development period and adulthood (1 week prior to capture). Two sources of weather data were tested tomore »determine which was more appropriate for evaluating impacts on mosquito physiology. All variables were then used to parameterize structural equation models to predict age.

    Results

    In comparing city-specific NOAA weather data and site-specific data from HOBO remote temperature and humidity loggers, we found that HOBO data were more tightly associated with body size. This information is useful for justifying the cost of more precise weather monitoring when studying intra-population heterogeneity of eco-physiological factors. We found that body size itself was not significantly associated with age. Of all the variables measured, we found that best fitting model for age included temperature during development, body size, female abundance, and relative humidity in the 1 week prior to capture . The strength of models improved drastically when testing one city at a time, with Hermosillo (the only study city with seasonal dengue transmission) having the best fitting model for age. Despite our finding that there was a bias in the body size of mosquitoes collected alive from the BG sentinel traps that favored large females, there was still sufficient variation in the size of females collected alive to show that inclusion of this entomological indicator improved the predictive capacity of our models.

    Conclusions

    Inclusion of body size data increased the strength of weather-based models for age. Importantly, we found that variation in age was greater within cities than between cities, suggesting that modeling of age must be made on a city-by-city basis. These results contribute to efforts to use weather forecasts to predict changes in the probability of disease transmission by mosquito vectors.

    Graphical abstract« less
  2. Hamer, Gabriel (Ed.)
    Abstract Many species distribution maps indicate the ranges of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) overlap in Florida despite the well-documented range reduction of Ae. aegypti. Within the last 30 yr, competitive displacement of Ae. aegypti by Ae. albopictus has resulted in partial spatial segregation of the two species, with Ae. aegypti persisting primarily in urban refugia. We modeled fine-scale distributions of both species, with the goal of capturing the outcome of interspecific competition across space by building habitat suitability maps. We empirically parameterized models by sampling 59 sites in south and central Florida over time and incorporated climatic, landscape, and human population data to identify predictors of habitat suitability for both species. Our results show human density, precipitation, and urban land cover drive Ae. aegypti habitat suitability, compared with exclusively climatic variables driving Ae. albopictus habitat suitability. Remotely sensed variables (macrohabitat) were more predictive than locally collected metrics (microhabitat), although recorded minimum daily temperature showed significant, inverse relationships with both species. We detected minor Aedes habitat segregation; some periurban areas that were highly suitable for Ae. albopictus were unsuitable for Ae. aegypti. Fine-scale empirical models like those presented here have the potential for precise risk assessment and themore »improvement of operational applications to control container-breeding Aedes mosquitoes.« less
  3. Diuk-Wasser, Maria (Ed.)
    Abstract Environmental conditions associated with urbanization are likely to influence the composition and abundance of mosquito (Diptera, Culicidae) assemblages through effects on juvenile stages, with important consequences for human disease risk. We present six years (2011–2016) of weekly juvenile mosquito data from distributed standardized ovitraps and evaluate how variation in impervious cover and temperature affect the composition and abundance of container-breeding mosquito species in Maryland, USA. Species richness and evenness were lowest at sites with high impervious cover (>60% in 100-m buffer). However, peak diversity was recorded at sites with intermediate impervious cover (28–35%). Four species were observed at all sites, including two recent invasives (Aedes albopictus Skuse, Ae. japonicus Theobald), an established resident (Culex pipiens L), and one native (Cx. restuans Theobald). All four are viral vectors in zoonotic or human transmission cycles. Temperature was a positive predictor of weekly larval abundance during the growing season for each species, as well as a positive predictor of rapid pupal development. Despite being observed at all sites, each species responded differently to impervious cover. Abundance of Ae. albopictus larvae was positively associated with impervious cover, emphasizing that this medically-important vector not only persists in the warmer, impervious urban landscape but ismore »positively associated with it. Positive temperature effects in our models of larval abundance and pupae occurrence in container habitats suggest that these four vector species are likely to continue to be present and abundant in temperate cities under future temperature scenarios.« less
  4. Barrera, Roberto (Ed.)
    Arboviruses transmitted by Aedes aegypti (e.g., dengue, chikungunya, Zika) are of major public health concern on the arid coastal border of Ecuador and Peru. This high transit border is a critical disease surveillance site due to human movement-associated risk of transmission. Local level studies are thus integral to capturing the dynamics and distribution of vector populations and social-ecological drivers of risk, to inform targeted public health interventions. Our study examines factors associated with household-level Ae . aegypti presence in Huaquillas, Ecuador, while accounting for spatial and temporal effects. From January to May of 2017, adult mosquitoes were collected from a cohort of households (n = 63) in clusters (n = 10), across the city of Huaquillas, using aspirator backpacks. Household surveys describing housing conditions, demographics, economics, travel, disease prevention, and city services were conducted by local enumerators. This study was conducted during the normal arbovirus transmission season (January—May), but during an exceptionally dry year. Household level Ae . aegypti presence peaked in February, and counts were highest in weeks with high temperatures and a week after increased rainfall. Univariate analyses with proportional odds logistic regression were used to explore household social-ecological variables and female Ae . aegypti presence. We foundmore »that homes were more likely to have Ae . aegypti when households had interruptions in piped water service. Ae . aegypti presence was less likely in households with septic systems. Based on our findings, infrastructure access and seasonal climate are important considerations for vector control in this city, and even in dry years, the arid environment of Huaquillas supports Ae . aegypti breeding habitat.« less
  5. The markedly anthropophilic and endophilic behaviors of Aedes aegypti (L.) make it a very efficient vector of dengue, chikungunya, and Zika viruses. Although a large body of research has investigated the immature habitats and conditions for adult emergence, relatively few studies have focused on the indoor resting behavior and distribution of vectors within houses. We investigated the resting behavior of Ae. aegypti indoors in 979 houses of the city of Acapulco, Mexico, by performing exhaustive indoor mosquito collections to describe the rooms and height at which mosquitoes were found resting. In total, 1,403 adult and 747 female Ae. aegypti were collected, primarily indoors (98% adults and 99% females). Primary resting locations included bedrooms (44%), living rooms (25%), and bathrooms (20%), followed by kitchens (9%). Aedes aegypti significantly rested below 1.5 m of height (82% adults, 83% females, and 87% bloodfed females); the odds of finding adult Ae. aegypti mosquitoes below 1.5 m was 17 times higher than above 1.5 m. Our findings provide relevant information for the design of insecticide-based interventions selectively targeting the adult resting population, such as indoor residual spraying.