skip to main content


Title: Investigation of Murine Vaginal Creep Response to Altered Mechanical Loads
Abstract The vagina is a viscoelastic fibromuscular organ that provides support to the pelvic organs. The viscoelastic properties of the vagina are understudied but may be critical for pelvic stability. Most studies evaluate vaginal viscoelasticity under a single uniaxial load; however, the vagina is subjected to dynamic multiaxial loading in the body. It is unknown how varied multiaxial loading conditions affect vaginal viscoelastic behavior and which microstructural processes dictate the viscoelastic response. Therefore, the objective was to develop methods using extension-inflation protocols to quantify vaginal viscoelastic creep under various circumferential and axial loads. Then, the protocol was applied to quantify vaginal creep and collagen microstructure in the fibulin-5 wildtype and haploinsufficient vaginas. To evaluate pressure-dependent creep, the fibulin-5 wildtype and haploinsufficient vaginas (n = 7/genotype) were subjected to various constant pressures at the physiologic length for 100 s. For axial length-dependent creep, the vaginas (n = 7/genotype) were extended to various fixed axial lengths then subjected to the mean in vivo pressure for 100 s. Second-harmonic generation imaging was performed to quantify collagen fiber organization and undulation (n = 3/genotype). Increased pressure significantly increased creep strain in the wildtype, but not the haploinsufficient vagina. The axial length did not significantly affect the creep rate or strain in both genotypes. Collagen undulation varied through the depth of the subepithelium but not between genotypes. These findings suggest that the creep response to loading may vary with biological processes and pathologies, therefore, evaluating vaginal creep under various circumferential loads may be important to understand vaginal function.  more » « less
Award ID(s):
1751050
NSF-PAR ID:
10331221
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Biomechanical Engineering
Volume:
143
Issue:
12
ISSN:
0148-0731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The vagina plays a critical role in supporting the pelvic organs and loss of support leads to pelvic organ prolapse. It is unknown what microstructural changes influence prolapse progression nor how decreased elastic fibers contributes to vaginal remodeling and smooth muscle contractility. The objective for this study was to evaluate the effect of fibulin-5 haploinsufficiency, and deficiency with progressive prolapse on the biaxial contractile and biomechanical function of the murine vagina. Vaginas from wildtype (n = 13), haploinsufficient (n = 13), and deficient mice with grade 1 (n = 9) and grade 2 or 3 (n = 9) prolapse were explanted for biaxial contractile and biomechanical testing. Multiaxial histology (n = 3/group) evaluated elastic and collagen fiber microstructure. Western blotting quantified protein expression (n = 6/group). A one-way ANOVA or Kruskal–Wallis test evaluated statistical significance. Pearson’s or Spearman’s test determined correlations with prolapse grade. Axial contractility decreased with fibulin-5 deficiency and POP (p < 0.001), negatively correlated with prolapse grade (ρ = − 0.80; p < 0.001), and positively correlated with muscularis elastin area fraction (ρ = − 0.78; p = 0.004). Circumferential (ρ = 0.71; p < 0.001) and axial (ρ = 0.69; p < 0.001) vaginal wall stresses positively correlated with prolapse grade. These findings demonstrated that fibulin-5 deficiency and prolapse progression decreased vaginal contractility and increased vaginal wall stress. Future work is needed to better understand the processes that contribute to prolapse progression in order to guide diagnostic, preventative, and treatment strategies. 
    more » « less
  2. Abstract

    The vagina is a highly inhomogeneous, anisotropic, and viscoelastic organ that undergoes significant deformations in vivo. The mechanical attributes of this organ facilitate important physiological functions during menstruation, intercourse, and birthing. Despite the crucial mechanical role that the vagina plays within the female reproductive system, the deformations that the organ can sustain over time under constant pressure, in both the longitudinal direction (LD) and circumferential direction (CD), have not been fully characterized. This experimental study focuses on quantifying the creep properties of the vagina via ex vivo inflation testing using the rat as an animal model. Toward this end, rat vaginas were subjected to three consecutively increasing constant luminal pressures (28, 55, and 83 kPa) using a custom-built experimental setup and the resulting inhomogeneous deformations were measured using the digital image correlation (DIC) method. The vagina was found to deform significantly more in the CD than the LD at any constant pressure, suggesting that the organ primarily adapts to constant pressures by significantly changing the diameter rather that the length. The change in deformation over time was significantly higher during the first inflation test at a constant pressure of 28 kPa than during the second and third inflation tests at constant pressures of 55 and 83 kPa, respectively. The findings of this study on the mechanical behavior of the vagina could serve to advance our limited knowledge about the physiology and pathophysiology of this important reproductive organ.

     
    more » « less
  3. Abstract Higher reproductive age is associated with an increased risk of gestational diabetes, pre-eclampsia, and severe vaginal tearing during delivery. Further, menopause is associated with vaginal stiffening. However, the mechanical properties of the vagina during reproductive aging before the onset of menopause are unknown. Therefore, the first objective of this study was to quantify the biaxial mechanical properties of the nulliparous murine vagina with reproductive aging. Menopause is further associated with a decrease in elastic fiber content, which may contribute to vaginal stiffening. Hence, our second objective was to determine the effect of elastic fiber disruption on the biaxial vaginal mechanical properties. To accomplish this, vaginal samples from CD-1 mice aged 2–14 months underwent extension-inflation testing protocols (n = 64 total; n = 16/age group). Then, half of the samples were randomly allocated to undergo elastic fiber fragmentation via elastase digestion (n = 32 total; 8/age group) to evaluate the role of elastic fibers. The material stiffness increased with reproductive age in both the circumferential and axial directions within the control and elastase-treated vaginas. The vagina demonstrated anisotropic mechanical behavior, and anisotropy increased with age. In summary, vaginal remodeling with reproductive age included increased direction-dependent material stiffness, which further increased following elastic fiber disruption. Further work is needed to quantify vaginal remodeling during pregnancy and postpartum with reproductive aging to better understand how age-related vaginal remodeling may contribute to an increased risk of vaginal tearing. 
    more » « less
  4. null (Ed.)
    Abstract Pelvic organ prolapse (POP) is a condition characterized by displacement of the vagina from its normal anatomical position leading to symptoms such as incontinence, physical discomfort, and poor self-image. Conservative treatment has shown limited success and surgical procedures, including the use of mesh, often lead to severe complications. To improve the current treatment methods for prolapse, the viscoelastic properties of vaginal tissue need to be characterized. We determined the biaxial stress relaxation response of vaginal tissue isolated from healthy pubertal gilts. Square specimens (n = 20) with sides aligned along the longitudinal directions (LD) and circumferential direction (CD) of the vagina were biaxially displaced up to 5 N. The specimens were then kept at the displacements corresponding to 5 N for 20 min in both the LD and CD, and the corresponding strains were measured using digital image correlation (DIC). The stresses in the LD and CD were found to decrease by 49.91 ± 5.81% and 46.22 ± 5.54% after 20 min, respectively. The strain in the LD and CD increased slightly from 0.080 ± 0.054 to 0.091 ± 0.064 and 0.050 ± 0.039 to 0.058 ± 0.047, respectively, but these changes were not significant (p > 0.01). By using the Peleg model, the initial decay rate and the asymptotic stress during stress relaxation were found to be significantly higher in the LD than in the CD (p≪0.001), suggesting higher stress relaxation in the LD. These findings may have implications for improving current surgical mesh, mechanical devices, and physical therapy used for prolapse treatment. 
    more » « less
  5. Jiang, Yi (Ed.)
    Elastin is present in the extracellular matrix (ECM) of connective tissues, and its mechanical properties are well documented. In Marfan syndrome, however, the inability to properly code for the protein fibrillin-1 prematurely leads to the degradation and loss of elastin fiber integrity in the ECM. In this study, the role of elastin in the ECM of the anterior leaflet of the tricuspid valve was investigated by examining the biomechanical behavior of porcine leaflets before and after the application of the enzyme elastase. Five loading protocols were applied to the leaflet specimens in two groups (elastase-treated and control samples). The mechanical response following elastase application yielded a significantly stiffer material in both the radial and circumferential directions. At a physiological level of stress (85 kPa), the elastase group had an average strain of 26.21% and 6.32% in the radial and circumferential directions, respectively, at baseline prior to elastase application. Following elastase treatment, the average strain was 5.28% and 0.97% in the radial and circumferential directions, respectively. No statistically significant change was found in the control group following sham treatment with phosphate-buffered saline (PBS). Two-photon microscopy images confirmed that after the removal of elastin, the collagen fibers displayed a loss of undulation. With a significant reduction in radial compliance, the ability to withstand physiological loads may be compromised. As such, an extracellular matrix that is structurally deficient in elastin may hinder normal tricuspid valve function. 
    more » « less