Mechanical characterization of the ex vivo tricuspid valve (TV) continues to provide key insights into native valve function and the development of valvular diseases. However, experimental methods to characterize TV biomechanical behavior ex vivo often fail to account for potential changes in the tissue’s mechanical responses that may occur during experiment preparation. Therefore, we assessed the mechanical responses of the anterior tricuspid leaflet (ATL) via biaxial mechanical testing over the course of 5 h to validate the accuracy of our fresh tissue experiments. We hypothesized that ATL mechanical responses would remain consistent for the proposed time scale. We found that ATL stiffness, represented by the upper tangent modulus (UTM), did not significantly change in either the radial or circumferential directions for the 5-h test period. Similarly, no significant change was observed in radial or circumferential strains corresponding to an estimated mean systolic stress value of 85 kPa. Overall mean UTM (±standard error of the mean (SEM)) showed that ATL samples were significantly stiffer in the circumferential direction (11.3 ± 0.98 MPa) compared to the radial direction (2.29 ± 0.20 MPa) across all time points. Thus, our results indicate that the outcomes of ex vivo tricuspid valve studies requiring sample preparation up to 5 h remain reliable.
more »
« less
The role of elastin on the mechanical properties of the anterior leaflet in porcine tricuspid valves
Elastin is present in the extracellular matrix (ECM) of connective tissues, and its mechanical properties are well documented. In Marfan syndrome, however, the inability to properly code for the protein fibrillin-1 prematurely leads to the degradation and loss of elastin fiber integrity in the ECM. In this study, the role of elastin in the ECM of the anterior leaflet of the tricuspid valve was investigated by examining the biomechanical behavior of porcine leaflets before and after the application of the enzyme elastase. Five loading protocols were applied to the leaflet specimens in two groups (elastase-treated and control samples). The mechanical response following elastase application yielded a significantly stiffer material in both the radial and circumferential directions. At a physiological level of stress (85 kPa), the elastase group had an average strain of 26.21% and 6.32% in the radial and circumferential directions, respectively, at baseline prior to elastase application. Following elastase treatment, the average strain was 5.28% and 0.97% in the radial and circumferential directions, respectively. No statistically significant change was found in the control group following sham treatment with phosphate-buffered saline (PBS). Two-photon microscopy images confirmed that after the removal of elastin, the collagen fibers displayed a loss of undulation. With a significant reduction in radial compliance, the ability to withstand physiological loads may be compromised. As such, an extracellular matrix that is structurally deficient in elastin may hinder normal tricuspid valve function.
more »
« less
- Award ID(s):
- 2049088
- PAR ID:
- 10411635
- Editor(s):
- Jiang, Yi
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 5
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0267131
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We examined the mechanical deformation of valve interstitial cells (VICs) in the anterior leaflet of the tricuspid valve and explored the relationship between the extracellular matrix (ECM) structure and cellular mechanics. Fresh porcine hearts were used to prepare specimens, subjected to biaxial tensile testing, and imaged using confocal microscopy with VIC nuclei staining. A multi-scale computational framework was developed to analyze cellular deformation and orientation within the ECM, using nuclear aspect ratio (NAR) as a metric. Experimental results showed that NAR values increased with mechanical loading, from 2.57±0.72 in a traction-free state to 3.4±1.29 at 130 kPa. Model predictions aligned with experimental findings. They also highlighted the significant impact of ECM fiber orientation on VIC nuclei deformation. These results indicate that mechanical forces profoundly influence cellular morphology and, potentially, their function. Further development of models is necessary to understand the complex interplay between the mechanical environment and cellular responses, crucial for identifying how mechanical forces affect tricuspid valve function and malfunction.more » « less
-
Abstract—Elastin is a key structural protein and its pathological degradation deterministic in aortic aneurysm (AA) outcomes. Unfortunately, using current diagnostic and clinical surveillance techniques the integrity of the elastic fiber network can only be assessed invasively. To address this, we employed fragmented elastin-targeting gold nanoparticles (EL-AuNPs) as a diagnostic tool for the evaluation of unruptured AAs. Electron dense EL-AuNPs were visualized within AAs using microcomputed tomography (micro-CT) and the corresponding Gold-to-Tissue volume ratios quantified. The Gold-to-Tissue volume ratios correlated strongly with the concentration (0, 0.5, or 10 U/mL) of infused porcine pancreatic elastase and therefore the degree of elastin damage. Hyperspectralmapping confirmed the spatial targeting of the EL-AuNPs to the sites of damaged elastin. Nonparametric Spearman’s rank correlation indicated that the micro-CT-based Gold-to-Tissue volume ratios had a strong correlation with loaded (q = 0.867, p-val = 0.015) and unloaded (q = 0.830, p-val = 0.005) vessel diameter, percent dilation (q = 0.976, p-val = 0.015), circumferential stress (q = 0.673, p-val = 0.007), loaded (q = 2 0.673, p-val = 0.017) and unloaded (q = 2 0.697, p-val = 0.031) wall thicknesses, circumferential stretch (q = 2 0.7234, p-val = 0.018), and lumen area compliance (q = 2 0.831, p-val = 0.003). Likewise, in terms of axial force and axial stress vs. stretch, the post-elastase vessels were stiffer. Collectively, these findings suggest that, when combined with CT imaging, EL-AuNPs can be used as a powerful tool in the non-destructive estimation of mechanical and geometric features of AAs.more » « less
-
null (Ed.)Intrinsic skin aging and photoaging, from exposure to ultraviolet (UV) radiation, are associated with altered regulation of genes associated with the extracellular matrix (ECM) and inflammation, as well as cellular damage from oxidative stress. The regulatory properties of 1-alpha, 25dihydroxyvitamin D3 (vitamin D) include endocrine, ECM regulation, cell differentiation, photoprotection, and anti-inflammation. The goal of this research was to identify the beneficial effects of vitamin D in preventing intrinsic skin aging and photoaging, through its direct effects as well as its effects on the ECM, associated heat shock proteins (HSP-47, and -70), cellular oxidative stress effects, and inflammatory cytokines [interleukin (IL)-1 and IL-8] in non-irradiated, UVA-radiated, UVB-radiated dermal fibroblasts. With regard to the ECM, vitamin D stimulated type I collagen and inhibited cellular elastase activity in non-irradiated fibroblasts; and stimulated type I collagen and HSP-47, and inhibited elastin expression and elastase activity in UVA-radiated dermal fibroblasts. With regard to cellular protection, vitamin D inhibited oxidative damage to DNA, RNA, and lipids in non-irradiated, UVA-radiated and UVB-radiated fibroblasts, and, in addition, increased cell viability of UVB-radiated cells. With regard to anti-inflammation, vitamin D inhibited expression of Il-1 and IL-8 in UVA-radiated fibroblasts, and stimulated HSP-70 in UVA-radiated and UVB-radiated fibroblasts. Overall, vitamin D is predominantly beneficial in preventing UVA-radiation induced photoaging through the differential regulation of the ECM, HSPs, and inflammatory cytokines, and protective effects on the cellular biomolecules. It is also beneficial in preventing UVB-radiation associated photoaging through the stimulation of cell viability and HSP-70, and the inhibition of cellular oxidative damage, and in preventing intrinsic aging through the stimulation of type I collagen and inhibition of cellular oxidative damage.more » « less
-
Abstract Higher reproductive age is associated with an increased risk of gestational diabetes, pre-eclampsia, and severe vaginal tearing during delivery. Further, menopause is associated with vaginal stiffening. However, the mechanical properties of the vagina during reproductive aging before the onset of menopause are unknown. Therefore, the first objective of this study was to quantify the biaxial mechanical properties of the nulliparous murine vagina with reproductive aging. Menopause is further associated with a decrease in elastic fiber content, which may contribute to vaginal stiffening. Hence, our second objective was to determine the effect of elastic fiber disruption on the biaxial vaginal mechanical properties. To accomplish this, vaginal samples from CD-1 mice aged 2–14 months underwent extension-inflation testing protocols (n = 64 total; n = 16/age group). Then, half of the samples were randomly allocated to undergo elastic fiber fragmentation via elastase digestion (n = 32 total; 8/age group) to evaluate the role of elastic fibers. The material stiffness increased with reproductive age in both the circumferential and axial directions within the control and elastase-treated vaginas. The vagina demonstrated anisotropic mechanical behavior, and anisotropy increased with age. In summary, vaginal remodeling with reproductive age included increased direction-dependent material stiffness, which further increased following elastic fiber disruption. Further work is needed to quantify vaginal remodeling during pregnancy and postpartum with reproductive aging to better understand how age-related vaginal remodeling may contribute to an increased risk of vaginal tearing.more » « less
An official website of the United States government

