skip to main content


Title: Subducted organic matter buffered by marine carbonate rules the carbon isotopic signature of arc emissions
Abstract Ocean sediments consist mainly of calcium carbonate and organic matter (phytoplankton debris). Once subducted, some carbon is removed from the slab and returns to the atmosphere as CO 2 in arc magmas. Its isotopic signature is thought to reflect the bulk fraction of inorganic (carbonate) and organic (graphitic) carbon in the sedimentary source. Here we challenge this assumption by experimentally investigating model sediments composed of 13 C-CaCO 3  +  12 C-graphite interacting with water at pressure, temperature and redox conditions of an average slab–mantle interface beneath arcs. We show that oxidative dissolution of graphite is the main process controlling the production of CO 2 , and its isotopic composition reflects the CO 2 /CaCO 3 rather than the bulk graphite/CaCO 3 (i.e., organic/inorganic carbon) fraction. We provide a mathematical model to relate the arc CO 2 isotopic signature with the fluid–rock ratios and the redox state in force in its subarc source.  more » « less
Award ID(s):
2124650
NSF-PAR ID:
10331305
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a quantitative assessment of the input and output of CO2and N2along the Hikurangi margin based on the chemical and stable isotope composition of sediments and basalts (from IODP 375), previously accreted metasedimentary rocks, and volcanic/hydrothermal gases (together with noble gas data for the latter). We compare these results with 3‐D thermo‐petrologic models for four lithologic structures, representing different plateau inputs. The model results indicate that 59%–85% of initially subducted C and 5%–12% of N is lost from the slab during metamorphism, with both volatiles being dominantly sourced from altered oceanic crust with some contribution from subducted sediment at the forearc‐arc transition (75–90 km depth). The δ13CVPDBand CO2/3He values for the arc gases range from −8.3 to −1.4‰ and 2 × 109to 2.7 × 1011, indicating contributions from slab carbonate, organic C, and mantle C of 67%, 30%, and 3%, respectively. The δ15Nairand N2/36Ar values of arc gases are −1.0 to +2.3‰ and 1.54 × 104to 1.9 × 105, indicating slab and mantle contributions of 74% and 26%. The δ13C signature of gases requires addition of organic C by tectonic erosion and/or shallow crustal assimilation. These calculations yield whole‐margin fluxes of 5.4–7.0 Tg/yr for CO2and 0.0022–0.0057 Tg/yr for N2,corresponding to ∼2.2% and 1%–30% of the global CO2and N2flux from subaerial volcanoes worldwide (assuming no loss during transit). This unique assessment of volatile cycling could prove useful in refining regional and global estimates of volatile recycling efficiency.

     
    more » « less
  2. Abstract

    Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to short and long eccentricity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reducedpCO2and dissolved inorganic carbon (DIC) δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3preservation in the model is enhanced during eccentricity‐modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model‐data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing.

     
    more » « less
  3. Abstract

    Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically‐modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to obliquity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reducedpCO2and dissolved inorganic carbon δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3preservation in the model is enhanced during eccentricity modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model‐data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing.

     
    more » « less
  4. Abstract

    Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.

     
    more » « less
  5. Abstract

    Subduction zones impose an important control on the geochemical cycling between the surficial and internal reservoirs of the Earth. Sulphur and carbon are transferred into Earth’s mantle by subduction of pelagic sediments and altered oceanic lithosphere. Release of oxidizing sulphate- and carbonate-bearing fluids modifies the redox state of the mantle and the chemical budget of subduction zones. Yet, the mechanisms of sulphur and carbon cycling within subduction zones are still unclear, in part because data are typically derived from arc volcanoes where fluid compositions are modified during transport through the mantle wedge. We determined the bulk rock elemental, and sulphur and carbon isotope compositions of exhumed ultramafic and metabasic rocks from Syros, Greece. Comparison of isotopic data with major and trace element compositions indicates seawater alteration and chemical exchange with sediment-derived fluids within the subduction zone channel. We show that small bodies of detached slab material are subject to metasomatic processes during exhumation, in contrast to large sequences of obducted ophiolitic sections that retain their seafloor alteration signatures. In particular, fluids circulating along the plate interface can cause sulphur mobilization during several stages of exhumation within high-pressure rocks. This takes place more pervasively in serpentinites compared to mafic rocks.

     
    more » « less