skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Radar and optical remote sensing for near real‐time assessments of cyclone impacts on coastal ecosystems
Rapid impact assessment of cyclones on coastal ecosystems is critical for timely rescue and rehabilitation operations in highly human-dominated landscapes. Such assessments should also include damage assessments of vegetation for restoration planning in impacted natural landscapes. Our objective is to develop a remote sensing-based approach combining satellite data derived from optical (Sentinel-2), radar (Sentinel-1), and LiDAR (Global Ecosystem Dynamics Investigation) platforms for rapid assessment of post-cyclone inundation in nonforested areas and vegetation damage in a primarily forested ecosystem. We apply this multi-scalar approach for assessing damages caused by the cyclone Amphan that hit coastal India and Bangladesh in May 2020, severely flooding several districts in the two countries, and causing destruction to the Sundarban mangrove forests. Our analysis shows that at least 6821 sq. km. land across the 39 study districts was inundated even after 10 days after the cyclone. We further calculated the change in forest greenness as the difference in normalized difference vegetation index (NDVI) pre- and post-cyclone. Our findings indicate a <0.2 unit decline in NDVI in 3.45 sq. km. of the forest. Rapid assessment of post-cyclone damage in mangroves is challenging due to limited navigability of waterways, but critical for planning of mitigation and recovery measures. We demonstrate the utility of Otsu method, an automated statistical approach of the Google Earth Engine platform to identify inundated areas within days after a cyclone. Our radar-based inundation analysis advances current practices because it requires minimal user inputs, and is effective in the presence of high cloud cover. Such rapid assessment, when complemented with detailed information on species and vegetation composition, can inform appropriate restoration efforts in severely impacted regions and help decision makers efficiently manage resources for recovery and aid relief. We provide the datasets from this study on an open platform to aid in future research and planning endeavors.  more » « less
Award ID(s):
1757353
PAR ID:
10331391
Author(s) / Creator(s):
; ; ;
Editor(s):
Sankey, Temuulen; Van Den Broeke, Matthew
Date Published:
Journal Name:
Remote Sensing in Ecology and Conservation
ISSN:
2056-3485
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Southeastern United States frequently experience tornadoes, necessitating rapid response and recovery efforts by state and federal agencies. Accurate information about the extent and severity of tornado-induced damage, especially debris volume and locations, is crucial for these efforts. This study, therefore, focuses on post-tornado debris assessment in Leon County, Florida, which was hit by two EF-2 and an EF-1 tornadoes in May 2024. Using satellite imagery from the Planetscope satellite and Geographic Information Systems (GIS), a macro-level evaluation of tornado debris impact was conducted, particularly on roadways and impacted communities. The proposed approach includes an evaluation of the overall post-tornado debris impact across the entire county and its population, and a detailed analysis of debris impact on roadways and its effect on accessibility. Spectral indices from satellite images, specifically the Normalized Difference Vegetation Index (NDVI), were utilized to derive assessment parameters. By comparing NDVI values from pre- and post-tornado images, we analyzed changes in vegetation and debris accumulation along roadway segments leading to possible roadway closures. This integrated method provides critical insights for enhancing disaster response and recovery operations in tornado-prone regions. Findings indicate that high volumes of vegetative debris were present in the south-central parts of the county, which is occupied by the highest population of county residents. The roadway segments in this region also recorded highest debris volumes, which is a critical information for agencies that need to know highly impacted locations. Comparing the results to ground truth damage data, the accuracy recorded was 74%. 
    more » « less
  2. This article reviews case studies which have used remote sensing data for different aspects of flood crop loss assessment. The review systematically finds a total of 62 empirical case studies from the past three decades. The number of case studies has recently been increased because of increased availability of remote sensing data. In the past, flood crop loss assessment was very generalized and time-intensive because of the dependency on the survey-based data collection. Remote sensing data availability makes rapid flood loss assessment possible. This study groups flood crop loss assessment approaches into three broad categories: flood-intensity-based approach, crop-condition-based approach, and a hybrid approach of the two. Flood crop damage assessment is more precise when both flood information and crop condition are incorporated in damage assessment models. This review discusses the strengths and weaknesses of different loss assessment approaches. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat are the dominant sources of optical remote sensing data for flood crop loss assessment. Remote-sensing-based vegetation indices (VIs) have significantly been utilized for crop damage assessments in recent years. Many case studies also relied on microwave remote sensing data, because of the inability of optical remote sensing to see through clouds. Recent free-of-charge availability of synthetic-aperture radar (SAR) data from Sentinel-1 will advance flood crop damage assessment. Data for the validation of loss assessment models are scarce. Recent advancements of data archiving and distribution through web technologies will be helpful for loss assessment and validation. 
    more » « less
  3. The emergence of mobile platforms equipped with Global Positioning System technology enables real-time data collection affording opportunities for mining data applicable to rapid flood inundation assessment. The collected data can be employed to complement existing methods for rapid flood inundation assessment, such as remote sensing, to enhance situational awareness. In particular, telemetry-based digital trace data related to human activity have intrinsic advantages to be used for inundation assessment. In this study, we investigate the use of Mapbox telemetry data, which provides human activity indices with high spatial and temporal resolutions, for application in rapid flood inundation assessment. Using data from Hurricane Harvey in 2017 in Harris County, Texas, we (1) study anomalous fluctuations in human activities and analyze the differences in activity level between inundated and non-inundated areas and (2) investigate changes in the concentration of human activity, to explore the disruption of human activity as an indicator of flood inundation. Results show that both analyses can provide valuable rapid insights regarding flood inundation status. Anomalous activities can be significantly higher/lower in flooded areas compared with non-flooded areas. Also, the concentration of human activity during the flood propagation period across affected watersheds can be observed. This study contributes to the state of knowledge in smart flood resilience by investigating the application of ubiquitous telemetry-based digital trace data to enhance rapid flood inundation assessment. Accordingly, the use of such digital trace data could provide emergency managers and public officials with valuable insights to inform impact evaluation and response actions. 
    more » « less
  4. Remote reconnaissance missions are promising solutions for the assessment of earthquake-induced structural damage and cascading geological hazards. Space-borne remote sensing can complement in-field missions when safety and accessibility concerns limit post-earthquake operations on the ground. However, the implementation of remote sensing techniques in post-disaster missions is limited by the lack of methods that combine different techniques and integrate them with field survey data. This paper presents a new approach for rapid post-earthquake building damage assessment and landslide mapping, based on Synthetic Aperture Radar (SAR) data. The proposed texture-based building damage classification approach exploits very high resolution post-earthquake SAR data integrated with building survey data. For landslide mapping, a backscatter intensity-based landslide detection approach, which also includes the separation between landslides and flooded areas, is combined with optical-based manual inventories. The approach was implemented during the joint Structural Extreme Event Reconnaissance, GeoHazards International and Earthquake Engineering Field Investigation Team mission that followed the 2021 Haiti Earthquake and Tropical Cyclone Grace. 
    more » « less
  5. Coastal mangrove forests provide numerous ecosystem services, which can be disrupted by natural disturbances, mainly hurricanes. Canopy height (CH) is a key parameter for estimating carbon storage. Airborne Light Detection and Ranging (LiDAR) is widely viewed as the most accurate method for estimating CH but data are often limited in spatial coverage and are not readily available for rapid impact assessment after hurricane events. Hence, we evaluated the use of systematically acquired space-based Synthetic Aperture Radar (SAR) and optical observations with airborne LiDAR to predict CH across expansive mangrove areas in South Florida that were severely impacted by Category 3 Hurricane Irma in 2017. We used pre- and post-Irma LiDAR-derived canopy height models (CHMs) to train Random Forest regression models that used features of Sentinel-1 SAR time series, Landsat-8 optical, and classified mangrove maps. We evaluated (1) spatial transfer learning to predict regional CH for both time periods and (2) temporal transfer learning coupled with species-specific error correction models to predict post-Irma CH using models trained by pre-Irma data. Model performance of SAR and optical data differed with time period and across height classes. For spatial transfer, SAR data models achieved higher accuracy than optical models for post-Irma, while the opposite was the case for the pre-Irma period. For temporal transfer, SAR models were more accurate for tall trees (>10 m) but optical models were more accurate for short trees. By fusing data of both sensors, spatial and temporal transfer learning achieved the root mean square errors (RMSEs) of 1.9 m and 1.7 m, respectively, for absolute CH. Predicted CH losses were comparable with LiDAR-derived reference values across height and species classes. Spatial and temporal transfer learning techniques applied to readily available spaceborne satellite data can enable conservation managers to assess the impacts of disturbances on regional coastal ecosystems efficiently and within a practical timeframe after a disturbance event. 
    more » « less