skip to main content

Title: Radar and optical remote sensing for near real‐time assessments of cyclone impacts on coastal ecosystems
Rapid impact assessment of cyclones on coastal ecosystems is critical for timely rescue and rehabilitation operations in highly human-dominated landscapes. Such assessments should also include damage assessments of vegetation for restoration planning in impacted natural landscapes. Our objective is to develop a remote sensing-based approach combining satellite data derived from optical (Sentinel-2), radar (Sentinel-1), and LiDAR (Global Ecosystem Dynamics Investigation) platforms for rapid assessment of post-cyclone inundation in nonforested areas and vegetation damage in a primarily forested ecosystem. We apply this multi-scalar approach for assessing damages caused by the cyclone Amphan that hit coastal India and Bangladesh in May 2020, severely flooding several districts in the two countries, and causing destruction to the Sundarban mangrove forests. Our analysis shows that at least 6821 sq. km. land across the 39 study districts was inundated even after 10 days after the cyclone. We further calculated the change in forest greenness as the difference in normalized difference vegetation index (NDVI) pre- and post-cyclone. Our findings indicate a <0.2 unit decline in NDVI in 3.45 sq. km. of the forest. Rapid assessment of post-cyclone damage in mangroves is challenging due to limited navigability of waterways, but critical for planning of mitigation and recovery measures. We demonstrate more » the utility of Otsu method, an automated statistical approach of the Google Earth Engine platform to identify inundated areas within days after a cyclone. Our radar-based inundation analysis advances current practices because it requires minimal user inputs, and is effective in the presence of high cloud cover. Such rapid assessment, when complemented with detailed information on species and vegetation composition, can inform appropriate restoration efforts in severely impacted regions and help decision makers efficiently manage resources for recovery and aid relief. We provide the datasets from this study on an open platform to aid in future research and planning endeavors. « less
Authors:
; ; ;
Editors:
Sankey, Temuulen; Van Den Broeke, Matthew
Award ID(s):
1757353
Publication Date:
NSF-PAR ID:
10331391
Journal Name:
Remote Sensing in Ecology and Conservation
ISSN:
2056-3485
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, there have been rapid improvements in both remote sensing methods and satellite image availability that have the potential to massively improve burn severity assessments of the Alaskan boreal forest. In this study, we utilized recent pre- and post-fire Sentinel-2 satellite imagery of the 2019 Nugget Creek and Shovel Creek burn scars located in Interior Alaska to both assess burn severity across the burn scars and test the effectiveness of several remote sensing methods for generating accurate map products: Normalized Difference Vegetation Index (NDVI), Normalized Burn Ratio (NBR), and Random Forest (RF) and Support Vector Machine (SVM) supervised classification. We used 52 Composite Burn Index (CBI) plots from the Shovel Creek burn scar and 28 from the Nugget Creek burn scar for training classifiers and product validation. For the Shovel Creek burn scar, the RF and SVM machine learning (ML) classification methods outperformed the traditional spectral indices that use linear regression to separate burn severity classes (RF and SVM accuracy, 83.33%, versus NBR accuracy, 73.08%). However, for the Nugget Creek burn scar, the NDVI product (accuracy: 96%) outperformed the other indices and ML classifiers. In this study, we demonstrated that when sufficient ground truth data is available, themore »ML classifiers can be very effective for reliable mapping of burn severity in the Alaskan boreal forest. Since the performance of ML classifiers are dependent on the quantity of ground truth data, when sufficient ground truth data is available, the ML classification methods would be better at assessing burn severity, whereas with limited ground truth data the traditional spectral indices would be better suited. We also looked at the relationship between burn severity, fuel type, and topography (aspect and slope) and found that the relationship is site-dependent.« less
  2. This article reviews case studies which have used remote sensing data for different aspects of flood crop loss assessment. The review systematically finds a total of 62 empirical case studies from the past three decades. The number of case studies has recently been increased because of increased availability of remote sensing data. In the past, flood crop loss assessment was very generalized and time-intensive because of the dependency on the survey-based data collection. Remote sensing data availability makes rapid flood loss assessment possible. This study groups flood crop loss assessment approaches into three broad categories: flood-intensity-based approach, crop-condition-based approach, and a hybrid approach of the two. Flood crop damage assessment is more precise when both flood information and crop condition are incorporated in damage assessment models. This review discusses the strengths and weaknesses of different loss assessment approaches. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat are the dominant sources of optical remote sensing data for flood crop loss assessment. Remote-sensing-based vegetation indices (VIs) have significantly been utilized for crop damage assessments in recent years. Many case studies also relied on microwave remote sensing data, because of the inability of optical remote sensing to see through clouds. Recent free-of-charge availability ofmore »synthetic-aperture radar (SAR) data from Sentinel-1 will advance flood crop damage assessment. Data for the validation of loss assessment models are scarce. Recent advancements of data archiving and distribution through web technologies will be helpful for loss assessment and validation.« less
  3. Abstract The accelerating climatic changes and new infrastructure development across the Arctic require more robust risk and environmental assessment, but thus far there is no consistent record of human impact. We provide a first panarctic satellite-based record of expanding infrastructure and anthropogenic impacts along all permafrost affected coasts (100 km buffer, ≈6.2 Mio km 2 ), named the Sentinel-1/2 derived Arctic Coastal Human Impact (SACHI) dataset. The completeness and thematic content goes beyond traditional satellite based approaches as well as other publicly accessible data sources. Three classes are considered: linear transport infrastructure (roads and railways), buildings, and other impacted area. C-band synthetic aperture radar and multi-spectral information (2016–2020) is exploited within a machine learning framework (gradient boosting machines and deep learning) and combined for retrieval with 10 m nominal resolution. In total, an area of 1243 km 2 constitutes human-built infrastructure as of 2016–2020. Depending on region, SACHI contains 8%–48% more information (human presence) than in OpenStreetMap. 221 (78%) more settlements are identified than in a recently published dataset for this region. 47% is not covered in a global night-time light dataset from 2016. At least 15% (180 km 2 ) correspond to new or increased detectable human impact sincemore »2000 according to a Landsat-based normalized difference vegetation index trend comparison within the analysis extent. Most of the expanded presence occurred in Russia, but also some in Canada and US. 31% and 5% of impacted area associated predominantly with oil/gas and mining industry respectively has appeared after 2000. 55% of the identified human impacted area will be shifting to above 0 ∘ C ground temperature at two meter depth by 2050 if current permafrost warming trends continue at the pace of the last two decades, highlighting the critical importance to better understand how much and where Arctic infrastructure may become threatened by permafrost thaw.« less
  4. The ability to monitor post-fire ecological responses and associated vegetation cover change is crucial to understanding how boreal forests respond to wildfire under changing climate conditions. Uncrewed aerial vehicles (UAVs) offer an affordable means of monitoring post-fire vegetation recovery for boreal ecosystems where field campaigns are spatially limited, and available satellite data are reduced by short growing seasons and frequent cloud cover. UAV data could be particularly useful across data-limited regions like the Cajander larch (Larix cajanderi Mayr.) forests of northeastern Siberia that are susceptible to amplified climate warming. Cajander larch forests require fire for regeneration but are also slow to accumulate biomass post-fire; thus, tall shrubs and other understory vegetation including grasses, mosses, and lichens dominate for several decades post-fire. Here we aim to evaluate the ability of two vegetation indices, one based on the visible spectrum (GCC; Green Chromatic Coordinate) and one using multispectral data (NDVI; Normalized Difference Vegetation Index), to predict field-based vegetation measures collected across post-fire landscapes of high-latitude Cajander larch forests. GCC and NDVI showed stronger linkages with each other at coarser spatial resolutions e.g., pixel aggregated means with 3-m, 5-m and 10-m radii compared to finer resolutions (e.g., 1-m or less). NDVI was amore »stronger predictor of aboveground carbon biomass and tree basal area than GCC. NDVI showed a stronger decline with increasing distance from the unburned edge into the burned forest. Our results show NDVI tended to be a stronger predictor of some field-based measures and while GCC showed similar relationships with the data, it was generally a weaker predictor of field-based measures for this region. Our findings show distinguishable edge effects and differentiation between burned and unburned forests several decades post-fire, which corresponds to the relatively slow accumulation of biomass for this ecosystem post-fire. These findings show the utility of UAV data for NDVI in this region as a tool for quantifying and monitoring the post-fire vegetation dynamics in Cajander larch forests.« less
  5. The southern Appalachian forests have been threatened by several large-scale disturbances, such as wildfire and infestation, which alter the forest ecosystem structures and functions. Hemlock Woolly Adelgid (Adelges tsugae Annand, HWA) is a non-native pest that causes widespread foliar damage and eventual mortality, resulting in irreversible tree decline in eastern (Tsuga canadensis) and Carolina (T. caroliniana) hemlocks throughout the eastern United States. It is important to monitor the extent and severity of these disturbances over space and time to better understand their implications in the biogeochemical cycles of forest landscapes. Using all available Landsat images, we investigate and compare the performance of Tasseled Cap Transformation (TCT)-based indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Disturbance Index (DI) in capturing the spectral-temporal trajectory of both abrupt and gradual forest disturbances (e.g., fire and hemlock decline). For each Landsat pixel, the temporal trajectories of these indices were fitted into a time series model, separating the inter-annual disturbance patterns (low frequency) and seasonal phenology (high frequency) signals. We estimated the temporal dynamics of disturbances based on the residuals between the observed and predicted values of the model, investigated the performance of all the indices in capturing the hemlock decline intensity,more »and further validated the results with the number of individual dead hemlocks identified from high-resolution aerial images. Our results suggested that the overall performance of NDVI, followed by TCT wetness, was most accurate in detecting both the disturbance timing and hemlock decline intensity, explaining over 90% of the variability in the number of dead hemlocks. Despite the overall good performance of TCT wetness in characterizing the disturbance regime, our analysis showed that this index has some limitations in characterizing disturbances due to its recovery patterns following infestation.« less