On 14th August 2021, a magnitude 7.2 earthquake struck the Tiburon Peninsula in the Caribbean nation of Haiti, approximately 150 km west of the capital Port-au-Prince. Aftershocks up to moment magnitude 5.7 followed and over 1,000 landslides were triggered. These events led to over 2,000 fatalities, 15,000 injuries and more than 137,000 structural failures. The economic impact is of the order of US$1.6 billion. The on-going Covid pandemic and a complex political and security situation in Haiti meant that deploying earthquake engineers from the UK to assess structural damage and identify lessons for future building construction was impractical. Instead, the Earthquake Engineering Field Investigation Team (EEFIT) carried out a hybrid mission, modelled on the previous EEFIT Aegean Mission of 2020. The objectives were: to use open-source information, particularly remote sensing data such as InSAR and Optical/Multispectral imagery, to characterise the earthquake and associated hazards; to understand the observed strong ground motions and compare these to existing seismic codes; to undertake remote structural damage assessments, and to evaluate the applicability of the techniques used for future post-disaster assessments. Remote structural damage assessments were conducted in collaboration with the Structural Extreme Events Reconnaissance (StEER) team, who mobilised a group of local non-experts to rapidly record building damage. The EEFIT team undertook damage assessment for over 2,000 buildings comprising schools, hospitals, churches and housing to investigate the impact of the earthquake on building typologies in Haiti. This paper summarises the mission setup and findings, and discusses the benefits, and difficulties, encountered during this hybrid reconnaissance mission.
more »
« less
This content will become publicly available on May 1, 2025
Combining remote sensing techniques and field surveys for post-earthquake reconnaissance missions
Remote reconnaissance missions are promising solutions for the assessment of earthquake-induced structural damage and cascading geological hazards. Space-borne remote sensing can complement in-field missions when safety and accessibility concerns limit post-earthquake operations on the ground. However, the implementation of remote sensing techniques in post-disaster missions is limited by the lack of methods that combine different techniques and integrate them with field survey data. This paper presents a new approach for rapid post-earthquake building damage assessment and landslide mapping, based on Synthetic Aperture Radar (SAR) data. The proposed texture-based building damage classification approach exploits very high resolution post-earthquake SAR data integrated with building survey data. For landslide mapping, a backscatter intensity-based landslide detection approach, which also includes the separation between landslides and flooded areas, is combined with optical-based manual inventories. The approach was implemented during the joint Structural Extreme Event Reconnaissance, GeoHazards International and Earthquake Engineering Field Investigation Team mission that followed the 2021 Haiti Earthquake and Tropical Cyclone Grace.
more »
« less
- Award ID(s):
- 2103550
- PAR ID:
- 10512289
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Bulletin of Earthquake Engineering
- Volume:
- 22
- Issue:
- 7
- ISSN:
- 1570-761X
- Page Range / eLocation ID:
- 3415 to 3439
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Post‐earthquake reconnaissance survey of structural damage is an effective way of documenting and understanding the impact of earthquakes on structures. This article aims at providing an efficient data‐based framework that reduces the required time for reconnaissance missions and predicts the damage intensities for every building in the affected region. We hypothesize that a joint selection of necessary structural and earthquake parameters along with sparse damage observations are sufficient to train a supervised learning algorithm and accurately infer the damage for other buildings in the region. Gaussian process regression is employed to prove the hypothesis for probabilistic inference of different damage indices. The algorithm performs efficiently by selecting a set of diverse and representative buildings for damage observations using K‐medoids clustering. To validate the hypothesis and the proposed method, the algorithm framework is implemented on two severe earthquake simulation testbeds. The impacts of different building and ground motion variables on the damage inference performance are discussed. Furthermore, the effectiveness of observation sampling by clustering in the post‐earthquake damage inference is compared with random sampling.more » « less
-
The 2016 Central Italy earthquake sequence caused numerous landslides over a large area in the Central Apennines. As a result, the Geotechnical Extreme Events Reconnaissance Association (GEER) organized post-earthquake reconnaissance missions to collect perishable data. Given the challenging conditions following the earthquakes, the GEER team implemented a phased reconnaissance approach. This paper illustrates this approach and how it was used to document the largest and most impactful seismically induced landslides. This phased approach relied upon satellite-based interferometric damage proxy maps, preliminary published reports of observed landslides, digital imaging from small unmanned aerial vehicles (UAVs), traditional manual observations, and terrestrial laser scanning. Data collected from the reconnoitered sites were used to develop orthophotos and meshed three-dimensional digital surface models. These products can provide valuable information such as accurate measurements of landslide ground movements in complex topographic geometries or boulder runout distances from rock falls. The paper describes three significant landslide case histories developed and documented with the phased approach: Nera Valley, Village of Pescara del Tronto, and near the villages of Crognaleto and Cervaro.more » « less
-
This article reviews case studies which have used remote sensing data for different aspects of flood crop loss assessment. The review systematically finds a total of 62 empirical case studies from the past three decades. The number of case studies has recently been increased because of increased availability of remote sensing data. In the past, flood crop loss assessment was very generalized and time-intensive because of the dependency on the survey-based data collection. Remote sensing data availability makes rapid flood loss assessment possible. This study groups flood crop loss assessment approaches into three broad categories: flood-intensity-based approach, crop-condition-based approach, and a hybrid approach of the two. Flood crop damage assessment is more precise when both flood information and crop condition are incorporated in damage assessment models. This review discusses the strengths and weaknesses of different loss assessment approaches. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat are the dominant sources of optical remote sensing data for flood crop loss assessment. Remote-sensing-based vegetation indices (VIs) have significantly been utilized for crop damage assessments in recent years. Many case studies also relied on microwave remote sensing data, because of the inability of optical remote sensing to see through clouds. Recent free-of-charge availability of synthetic-aperture radar (SAR) data from Sentinel-1 will advance flood crop damage assessment. Data for the validation of loss assessment models are scarce. Recent advancements of data archiving and distribution through web technologies will be helpful for loss assessment and validation.more » « less
-
Abstract. Rapid detection of landslides is critical for emergency response, disaster mitigation, and improving our understanding of landslide dynamics. Satellite-based synthetic aperture radar (SAR) can be used to detect landslides, often within days of a triggering event, because it penetrates clouds, operates day and night, and is regularly acquired worldwide. Here we present a SAR backscatter change approach in the cloud-based Google Earth Engine (GEE) that uses multi-temporal stacks of freely available data from the Copernicus Sentinel-1 satellites to generate landslide density heatmaps for rapid detection. We test our GEE-based approach on multiple recent rainfall- and earthquake-triggered landslide events. Our ability to detect surface change from landslides generally improves with the total number of SAR images acquired before and after a landslide event, by combining data from both ascending and descending satellite acquisition geometries and applying topographic masks to remove flat areas unlikely to experience landslides. Importantly, our GEE approach does not require downloading a large volume of data to a local system or specialized processing software, which allows the broader hazard and landslide community to utilize and advance these state-of-the-art remote sensing data for improved situational awareness of landslide hazards.more » « less