Populated coastal areas worldwide have a legacy of numerous solid waste disposal sites. At the same time, mean sea level is rising and likely to accelerate, increasing flooding and/or erosion. There is therefore concern that landfill sites located at and near the coast pose a growing risk to the environment from the potential release of liquid and solid waste materials. This paper aims to assess our present understanding of this issue as well as research and practice needs by synthesizing the available evidence across a set of developed country cases, comprising England, France, Germany, the Netherlands, and the United States (Florida). Common insights gained here include: (1) a lack of data and limited appreciation of waste release from coastal landfill as a potential problem; (2) recognition of the scale and diversity of coastal landfill waste within a range of generic settings (or situations); and (3) a lack of robust protocols that allow the impact of different categories of waste release to the coast to be assessed in a consistent and evidence-based manner, most particularly for solid waste. Hence, a need for greater understanding of the following issues is identified: (1) the amount, character and impact of waste that could bemore »
Design and Operation of Effective Landfills with Minimal Effects on the Environment and Human Health
Totaling at 7.4 billion people, the world’s population is rapidly growing, bringing along with it an increase in waste generation. The impact of this exponential increase in waste generation has resulted in the increased formation and utilization of landfills. In the present day, landfills are utilized to dispose of chemical, hazardous, municipal, and electronic wastes. However, despite their convenience, most landfills are improperly managed and face constant changes from the surrounding environment that interfere with their internal landfill processes. The objectives of this mixed review are to highlight the negative impacts landfills have on the environment and public health as well as outline the need for proper management practices to mitigate these effects. Inadequate management of landfills leads to issues concerning leachate collection and landfill gas (LFG) generation, which give rise to groundwater contamination and air pollution. This paper recognizes the disadvantages of utilizing landfills as the main disposal method by focusing on these two primary effects that improper management of landfills has on the environment and human health. Many experts have also reported that communities within close proximity to improperly managed landfills have an increased risk of health issues. Apart from implementing proper landfill management practices, it is important more »
- Editors:
- Yabe, John
- Award ID(s):
- 1757353
- Publication Date:
- NSF-PAR ID:
- 10331392
- Journal Name:
- Journal of Environmental and Public Health
- Volume:
- 2021
- Page Range or eLocation-ID:
- 1 to 13
- ISSN:
- 1687-9805
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Freshwater salinization is an emerging global problem impacting safe drinking water, ecosystem health and biodiversity, infrastructure corrosion, and food production. Freshwater salinization originates from diverse anthropogenic and geologic sources including road salts, human-accelerated weathering, sewage, urban construction, fertilizer, mine drainage, resource extraction, water softeners, saltwater intrusion, and evaporative concentration of ions due to hydrologic alterations and climate change. The complex interrelationships between salt ions and chemical, biological, and geologic parameters and consequences on the natural, social, and built environment are called Freshwater Salinization Syndrome (FSS). Here, we provide a comprehensive overview of salinization issues (past, present, and future), and we investigate drivers and solutions. We analyze the expanding global magnitude and scope of FSS including its discovery in humid regions, connections to human-accelerated weathering and mobilization of ‘chemical cocktails.’ We also present data illustrating: (1) increasing trends in salt ion concentrations in some of the world’s major freshwaters, including critical drinking water supplies; (2) decreasing trends in nutrient concentrations in rivers due to regulations but increasing trends in salinization, which have been due to lack of adequate management and regulations; (3) regional trends in atmospheric deposition of salt ions and storage of salt ions in soils and groundwater, andmore »
-
The potential of smart cities in remediating environmental problems in general and waste management, in particular, is an important question that needs to be investigated in academic research. Built on an integrative review of the literature, this study offers insights into the potential of smart cities and connected communities in facilitating waste management efforts. Shortcomings of existing waste management practices are highlighted and a conceptual framework for a centralized waste management system is proposed, where three interconnected elements are discussed: (1) an infrastructure for proper collection of product lifecycle data to facilitate full visibility throughout the entire lifespan of a product, (2) a set of new business models relied on product lifecycle data to prevent waste generation, and (3) an intelligent sensor-based infrastructure for proper upstream waste separation and on-time collection. The proposed framework highlights the value of product lifecycle data in reducing waste and enhancing waste recovery and the need for connecting waste management practices to the whole product lifecycle. An example of the use of tracking and data sharing technologies for investigating the waste management issues has been discussed. Finally, the success factors for implementing the proposed framework and some thoughts on future research directions have been discussed.
-
Many historically minoritized graduate students, here defined as Women, Latinx and Black/African American students, in Science, Technology, Engineering and Math (STEM) experience unwelcome or even hostile ecosystems or environments. Many of the social expectations are that historically minoritized graduate students in STEM should assimilate or acclimate to the cultural, where assimilation/acclimation are defined as cultural conformation vs. social acceptance of a student authentic self/identity. They may also experience forms of continuous microaggressions and isolation. The effects of chronic external stressors, such as experiencing discrimination and social isolation, on increased mental health disorders and decreased physiological health is well known [1-3]. Yet, evidence-based practices of support systems specifically for graduate students from historically marginalized communities to reduce the effects of climates of intimidation are not common. Indeed, researchers have found that such students “would benefit if colleges and universities attempted to deconstruct climates of intimidation [4]” and it has also been shown that teaching underrepresented minority students empowerment skills can improve academic success [5]. Self-advocacy originates from the American Counseling Association (ACA) and the Learning Disabilities (LD) communities for effective counseling that promotes academic success and is based on a social justice framework [6]. The underlying principle of self-advocacy is thatmore »
-
Municipal solid waste (MSW) landfills near a metropolitan area are renewable energy resources to produce heat and methane that can generate electricity. However, it is difficult to use those sources productively because disposed MSW in landfills are spatially and temporally heterogeneous. Regarding the prediction of the sources, the analysis of in situ MSW properties is an alternative way to reduce the uncertainty and to understand complex processes undergoing in the landfill effectively. A hydraulic profiling tool (HPT) and membrane interface probe (MIP) test measures the continuous profile of MSW properties with depth, including hydraulic pressure, temperature, electrical conductivity (EC), and the relative concentration of methane at the field. In this study, we conducted a series of the tests to investigate the MSW characteristics of active and closed landfills. MIP results showed that the methane existed closer to right below the top cover in the active landfill and several peak concentrations at different layers of the closed landfill. As the depth and age of the waste increased, the hydraulic pressure increased for both landfills. The average EC results showed that the electrical conductivity decreased with the landfill age. The results of hydraulic properties, temperature, and EC obtained from active and closedmore »