Landowners and natural resource agencies are seeking to better understand the benefits of best management practices (BMPs) for addressing water quality issues. Using edge-of-field and edge-of-farm runoff analysis, we compared runoff volumes and water quality between small watersheds where BMPs (e.g., prescribed grazing, silvicultural practices) were implemented and control watersheds managed using conventional practices (i.e., continuous grazing, natural forest revegetation). Flow-weighted samples, collected over a 2-year period using automated samplers, were analyzed for nitrate/nitrite nitrogen (NNN), total Kjeldahl nitrogen (TKN), total phosphorus (P), ortho-phosphate phosphorous (OP), total suspended solids (TSS), and Escherichia coli (E. coli). Comparison of silvicultural planting to conventional reforestation practices showed a significant decrease in NNN loads (p < 0.05) but no significant differences in TKN, P, OP, TSS, or E. coli. Continuously grazed sites yielded >24% more runoff than sites that were under prescribed grazing regimes, despite receiving less total rainfall. Likewise, NNN, TSS, and TKN loadings were significantly lower under prescribed grazing management than on conventionally grazed sites (p < 0.05). Data suggests that grazing BMPs can be an effective tool for rapidly improving water quality. However, silvicultural BMPs require more time (i.e., >2 years) to establish and achieve detectable improvements.
more »
« less
Efficacy of Heavy Use Area Protection (HUAP) Pads in Poultry Farm
This research focuses on the efficiency of recommended heavy use area protection (HUAP) pads installed in poultry houses utilizing the Choptank River, a tributary of the Chesapeake Bay. The Chesapeake Bay watershed is severely affected by crop agriculture and poultry feeding operations. Water quality degradation along with scarcity of water is a significant concern in this area, suggesting a need for changes in both environmental and groundwater management practices. Our objective in this study was to compare the efficiency of HUAP in reducing litter spillage and nutrient runoff between two poultry houses, one of which was constructed in 2005 and the other in 2009. The poultry house constructed in 2005 did not have HUAP pads initially; they were built in 2006. The poultry house built in 2009 had the pads from the starting point. We collected soil and water samples each month and analyzed them for pH, electrical conductivity (EC), nitrate, nitrite, total nitrogen, phosphate, and other soil properties throughout the year. The pH of soil and water samples was in the range of 6.8–8.0 and 6.5–7.2, respectively. We collected six water samples in total in the ditch, from points at retention ponds near the farm ditch to sites in wooded areas on the farm. Water sample B (where ditch water meets retention pond water from the poultry farm) had the highest EC value and nitrate, nitrite, and total nitrogen concentrations compared with other water samples. The subsequent water samples downstream had reduced loads of nutrients. The study results suggest that there was a minimum carryover of nutrients from soil into the runoff water, storm ditches, and adjacent stream. There was also a minimal effect of house cleaning and storm events in raising the concentration of nutrients in soil and water samples at our study sites. The older poultry site had higher total nitrogen and phosphorous surrounding the pads, whereas no elevated levels of nutrients were identified at the newer site. The ability of HUAP pads to hold onto contaminates decreases with age and use. This study also shows that the impacts from poultry activities on surface and groundwater can be minimized by using management practices such as HUAP pads. These practices can reduce pollution in the farm, increase productivity, and save farmers and ranchers time and money in the long run.
more »
« less
- Award ID(s):
- 1757353
- PAR ID:
- 10331393
- Date Published:
- Journal Name:
- Agriculture
- Volume:
- 11
- Issue:
- 2
- ISSN:
- 2077-0472
- Page Range / eLocation ID:
- 154
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The aim of this research was to examine how topography and homeowner fertilizer practices affected soil and hydrologic properties of residential lawns to determine if there are locations within lawns that have the potential to act as hotspots of nitrogen transport during rain events. This data set contains measurements of saturated infiltration rates, sorptivity, soil moisture, soil organic matter, pH, soil nitrate, soil ammonium, denitrification potentials and limiting factors, and nitrogen mineralization rates from fertilized and unfertilized residential and institutional lawns. Study lawns were located at homes of people who agreed to volunteer their lawn for the study from a door knocking campaign. Four sampling houses were located in an exurban neighborhood in Baisman Run. Five sampling houses were located in a suburban neighborhood in Dead Run. Two sampling locations on institutional lawns were located at University of Maryland Baltimore County. At the exurban study houses and institutional lawns sites,we identified one hillslope to conduct sampling on. At the Dead Run houses we identified one hillslope on the front yard and one in the backyard as there were distinct locations that were not present in the exurban neighborhood. In total we sampled on 16 hillslopes. At each hillslope, we identified the top, toe and swale locations. At each hillslope location, we selected three sampling locations along a transect (maximum 10 meters in length; total of 144 sampling locations). At each sampling location we ran a Cornell Sprinkle Infiltrometer to measure sorptivity and saturated infiltration rates. Volumetric water content was measured before and after infiltrometer runs with a Field Scout TDR 300 with 7.5 cm rods. In addition, at each sampling location we took two soil cores to 10 cm depth, and combined and homogenized the two cores for that sampling location for a total of 144 soil samples. Soil cores were stored on ice in the field, and then stored at 4°C in the lab until processed for variables mentioned above. Sampling for soil cores was conducted in September 2017 with one house collected on 11/1/2017 due to changes in homeowner volunteers. Cornell Sprinkle Infiltrometer measurements were taken in October 2017 with one exception for house DR3. The front yard was conducted on 1/30/2018 and the back yard was completed on 2/27/2018 due to scheduling conflicts and weather interference during October and proceeding months.more » « less
-
Weather conditions, hydrological responses and the dynamics of key nitrogen species in field runoff were continuously monitored at 15-min resolution on the intensively instrumented North Wyke Farm Platform (NWFP), a UK National Bioscience Research Infrastructure (NBRI), to support research on sustainable and resilient agriculture in the UK. Released data spanning 2013 to 2024 for 6 selected field catchments were aggregated to daily timestep, with reference to data quality flags, to produce continuous weather data, including maximum and minimum air temperature, daily total rainfall, wind speed and quality assured daily average soil moisture content, soil temperature at 15 cm depth, runoff rates, as well as nitrate, nitrite and ammonium concentrations. External data sources were sourced to infill some gaps for the weather data and summary statistics on data coverage were generated for the other data on an annual and seasonal basis where appropriate. Along with detailed field management data, the observed data provide a valuable resource for the parameterisation, calibration and validation of physically-based models for nitrogen losses at field scale to account for alternative management practices and land use under changing climate conditionsmore » « less
-
Rusănescu, C; Ungureanu, N (Ed.)Excessive land application of poultry litter (PL) may lead to surface runoff of nitrogen (N) and phosphorus (P), which cause eutrophication, fish death, and water pollution that ultimately have negative effects on humans and animals. Increases in poultry production in the Delmarva Peninsula underscore the need for more efficient, cost-effective, and sustainable disposal technologies for processing PL instead of direct land application. The pyrolysis conversion process can potentially produce nutrient-rich poultry litter biochar (PLB), while the pyrolysis process can change the N and P to a more stable component, thus reducing its runoff. Pyrolysis also kills off any microorganisms that would otherwise trigger negative environmental health effects. This study is to apply an integrated method and investigate the effect of pyrolysis temperature (300 °C, 500 °C), poultry litter source (different feedstock composition), and bedding material mixture (10% pine shavings) on PLB qualities and quantities. Proximate and ultimate analysis showed PL sources and bedding material addition influenced the physicochemical properties of feedstock. The SEM and BET surface results indicate that pyrolysis temperature had a significant effect on changing the PLB morphology and structure, as well as the pH value (7.78 at 300 °C vs. 8.78 at 500 °C), extractable phosphorus (P) (18.73 ppm at 300 °C vs. 11.72 ppm at 500 °C), sulfur (S) (363 ppm at 300 °C vs. 344 ppm at 500 °C), and production yield of PLBs (47.65% at 300 °C vs. 60.62% at 500 °C). The results further suggest that adding a bedding material mixture (10% pine shavings) to PLs improved qualities by reducing the content of extractable P and S, as well as pH values of PLBs. This study also found the increment in both the pore volume and the area of Bethel Farm was higher than that of Sun Farm. Characterization and investigation of qualities and quantities of PLB using the integrated framework suggest that PL from Bethel Farm could produce better-quality PLB at a higher pyrolysis temperature and bedding material mixture to control N and P runoff problems.more » « less
-
Agricultural runoff ranks second only to atmospheric deposition as a source of nitrogen pollution to streams in the southeastern United States. Climate-smart practices such as irrigation have the potential to reduce these impacts and provide resilience in the face of climate change. The purpose of this study is to evaluate the impact of irrigation amounts and fertilizer application strategies on surface nitrate export to surrounding steams. Data from an existing experiment on corn nitrogen fertilization in the Southeastern US was utilized and a crop simulation model was employed to simulate the water and nitrogen dynamics within the soil with particular emphases on nutrient uptake and residual nutrients. left in the soil after harvest under varying fertilization scenarios. A hydrologic and nutrient export model was developed to run in conjunction with the crop model to simulate lateral export from the fields. The results of this study indicate that climate and nutrient management are the dominant factors in determining surface nutrient transport under both rain fed and irrigated conditions, confirming previous studies. The overall results show that irrigation, on average, reduced nutrient export from the surface, especially in dry years. The effect is even greater if the nutrients are applied later in the year while irrigation is on-going. While this present study provides an initial look at the potential impacts of irrigation on nutrient export in humid areas, the available on-farm observational data is limited in its content. However, the results obtained support existing literature and provide further evidence on the impact of irrigation as a climate resilient practice and will help direct future studies in the region.more » « less
An official website of the United States government

