skip to main content

Title: Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US Midwest landscape
Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP)More>>
; ; ;
Publication Year:
134924 bytes
Award ID(s):
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar ( Populus nigra X P. maximowiczii ), switchgrass ( Panicum virgatum ), miscanthus ( Miscanthus giganteus ), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha −1  year −1 ) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth wasmore »sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L −1 ) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha −1  year −1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may leach legacy P from past cropland management.« less
  2. At two sites in the North Central USA (Michigan (KBS) and Wisconsin (ARL)), we evaluated the effect of N fertilization on the yield and quality of five perennial bioenergy feedstock cropping systems: (1) switchgrass (Panicum virgatum L.), (2) giant miscanthus (Miscanthus × giganteus), (3) a native grass mixture (5 species), (4) an early successional field (volunteer herbaceous species), and (5) a restored prairie (18 species). In a randomized complete block design with 5 replicates and 2 split plots, N was applied at 0 and 56 kg ha−1 to split plots for each cropping system from 2010 to 2016. No yieldmore »response to N was detected in switchgrass at either location in any year. Giant miscanthus exhibited a positive yield response to N at both sites (11% at KBS and 83% at ARL). Nitrogen fertilizer addition significantly reduced glucose (KBS 12.9 and 13.8 g kg−1 year−1, ARL 11.2 and 9.7 g kg−1 year−1) in the native grass mix and restored prairie systems respectively. Nitrogen fertilizer also reduced xylose at KBS in the switchgrasss, native grass mix, and restored prairie (4.9, 7.5, and 5.0 g kg−1 year−1). At ARL, N fertilization reduced xylose levels in switchgrass, giant miscanthus, and restored prairie (7.4, 6.8, and 6.2 g kg−1 year−1) and increased xylose levels in the early successional system (5.0 g kg−1 year−1).« less
  3. Expanding biofuel production is expected to accelerate the conversion of unmanaged marginal lands to meet biomass feedstock needs. Greenhouse gas production during conversion jeopardizes ensuing climate benefits, but most research to date has focused only on conversion to annual crops and only following tillage. Here we report the global warming impact of converting USDA Conservation Reserve Program (CRP) grasslands to three types of bioenergy crops using no‐till (NT) versus conventional tillage (CT). In three CRP fields planted to continuous corn, switchgrass, or restored prairie we established replicated NT and CT plots. For the two years following an initial soybean yearmore »in all fields, we found that, on average, NT conversion reduced nitrous oxide (N2O) emissions by 50% and carbon dioxide (CO2) emissions by 20% compared to CT conversion. Differences were higher in year 1 than in year 2 in the continuous corn field, and in the two perennial systems the differences disappeared after year 1. In all fields net CO2 emissions (as measured by eddy covariance) were positive for the first two years following CT establishment, but following NT establishment net CO2 emissions were close to zero or negative, indicating net C sequestration. Overall, NT improved the global warming impact of biofuel crop establishment following CRP conversion by over 20‐fold compared to CT (‐6.01 Mg CO2e ha−1 yr−1 for NT vs. ‐0.25 Mg CO2e ha−1 yr−1 for CT, on average). We also found that IPCC estimates of N2O emissions (as measured by static chambers) greatly underestimated actual emissions for converted fields regardless of tillage. Policies should encourage adoption of NT for converting marginal grasslands to perennial bioenergy crops in order to reduce carbon debt and maximize climate benefits.« less
  4. Biofuel crops, including annuals such as maize (Zea mays L.), soybean [Glycine max (L.) Merr.], and canola (Brassica napus L.), as well as high-biomass perennial grasses such as miscanthus (Miscanthus giganteus J.M. Greef & Deuter ex Hodkinson & Renvoiz), are candidates for sustainable alternative energy sources. However, large-scale conversion of croplands to perennial biofuel crops could have substantial impacts on regional water, nutrient, and C cycles due to the longer growing seasons and differences in rooting systems compared with most annual crops. However, due to the limited tools available to nondestructively study the spatiotemporal patterns of root water uptake inmore »situ at field scales, these differences in crop water use are not well known. Geophysical imaging tools such as electrical resistivity (ER) reveal changes in water content in the soil profile. In this study, we demonstrate the use of a novel coupled hydrogeophysical approach with both time domain reflectometry soil water content and ER measurements to compare root water uptake and soil properties of an annual crop rotation with the perennial grass miscanthus, across three growing seasons (2009?2011) in southwest Michigan, USA. We estimated maximum root depths to be between 1.2 and 2.2 m, with the vertical distribution of roots being notably deeper in 2009 relative to 2010 and 2011, likely due to the drought conditions during that first year. Modeled cumulative ET of both crops was underestimated (2?34%) relative to estimates obtained from soil water drawdown in prior studies but was found to be greater in the perennial grass than the annual crops, despite shallower modeled rooting depths in 2010 and 2011.« less
  5. Cool-season cover crops have been shown to reduce soil erosion and nutrient discharge from maize ( Zea mays L.) and soybean [ Glycine max (L.) Merr.] production systems. However, their effects on long-term weed dynamics are not well-understood. We utilized five long-term research trials in Iowa to quantify germinable weed seedbank densities and compositions after 10+ years of cover cropping treatments. All five trials consisted of zero-tillage maize-soybean rotations managed with and without the inclusion of a yearly winter rye ( Secale cereal L.) cover crop. Seedbank sampling was conducted in the early spring before crop planting at all locations,more »with three of the five trials having grown a soybean crop the preceding year, and two a maize crop. Two of the trials (both previously soybean) showed significant and biologically relevant decreases (4,070 and 927 seeds m −2 , respectively) in seedbank densities in cover crop treatments compared to controls. In another two trials, one previously maize and one previously soybean, no difference was detected in seedbank densities. In the fifth trial (previously maize), there was a significant, but biologically unimportant increase of 349 seeds m −2 . All five trials' weed communities were dominated by common waterhemp [ Amaranthus tuberculatus (Moq.)], and changes in seedbank composition from cover-cropping were driven by changes in this species. Although previous studies have shown that increases in cover crop biomass are strongly correlated with weed suppression, in our study we did not find a relationship between seedbank changes and the mean amount of cover crop biomass produced over a 10-years period (experiment means ranging from 0.5 to 2.0 Mg ha −1 yr −1 ), the stability of the cover crop biomass production, nor the amount produced going into the previous crop's growing season. We conclude that long-term use of a winter rye cover crop in a maize-soybean system has the potential to meaningfully reduce the size of weed seedbanks compared to winter fallows. However, identifying the mechanisms by which this occurs requires further research into processes such as seed predation and seed decay in cover cropped systems.« less