skip to main content


Title: GASKAP Pilot Survey Science. II. ASKAP Zoom Observations of Galactic 21 cm Absorption
Abstract Using the Australian Square Kilometre Array Pathfinder to measure 21 cm absorption spectra toward continuum background sources, we study the cool phase of the neutral atomic gas in the far outer disk, and in the inner Galaxy near the end of the Galactic bar at longitude 340°. In the inner Galaxy, the cool atomic gas has a smaller scale height than in the solar neighborhood, similar to the molecular gas and the super-thin stellar population in the bar. In the outer Galaxy, the cool atomic gas is mixed with the warm, neutral medium, with the cool fraction staying roughly constant with the Galactic radius. The ratio of the emission brightness temperature to the absorption, i.e., 1 − e − τ , is roughly constant for velocities corresponding to Galactic radius greater than about twice the solar circle radius. The ratio has a value of about 300 K, but this does not correspond to a physical temperature in the gas. If the gas causing the absorption has kinetic temperature of about 100 K, as in the solar neighborhood, then the value 300 K indicates that the fraction of the gas mass in this phase is one-third of the total H i mass.  more » « less
Award ID(s):
2108370
NSF-PAR ID:
10331586
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We have complemented existing observations of Hiabsorption with new observations of HCO+, C2H, HCN, and HNC absorption from the Atacama Large Millimeter/submillimeter Array and the Northern Extended Millimeter Array in the directions of 20 background radio continuum sources with 4° ≤ ∣b∣ ≤ 81° to constrain the atomic gas conditions that are suitable for the formation of diffuse molecular gas. We find that these molecular species form along sightlines whereAV≳ 0.25, consistent with the threshold for the Hi-to-H2transition at solar metallicity. Moreover, we find that molecular gas is associated only with structures that have an Hioptical depth >0.1, a spin temperature <80 K, and a turbulent Mach number ≳ 2. We also identify a broad, faint component to the HCO+absorption in a majority of sightlines. Compared to the velocities where strong, narrow HCO+absorption is observed, the Hiat these velocities has a lower cold neutral medium fraction and negligible CO emission. The relative column densities and linewidths of the different molecular species observed here are similar to those observed in previous experiments over a range of Galactic latitudes, suggesting that gas in the solar neighborhood and gas in the Galactic plane are chemically similar. For a select sample of previously observed sightlines, we show that the absorption line profiles of HCO+, HCN, HNC, and C2H are stable over periods of ∼3 yr and ∼25 yr, likely indicating that molecular gas structures in these directions are at least ≳100 au in size.

     
    more » « less
  2. ABSTRACT

    The cold neutral medium (CNM) is an important part of the galactic gas cycle and a precondition for the formation of molecular and star-forming gas, yet its distribution is still not fully understood. In this work, we present extremely high resolution simulations of spiral galaxies with time-dependent chemistry such that we can track the formation of the CNM, its distribution within the galaxy, and its correlation with star formation. We find no strong radial dependence between the CNM fraction and total neutral atomic hydrogen (H i) due to the decreasing interstellar radiation field counterbalancing the decreasing gas column density at larger galactic radii. However, the CNM fraction does increase in spiral arms where the CNM distribution is clumpy, rather than continuous, overlapping more closely with H2. The CNM does not extend out radially as far as H i, and the vertical scale height is smaller in the outer galaxy compared to H i with no flaring. The CNM column density scales with total mid-plane pressure and disappears from the gas phase below values of PT/kB = 1000 K cm−3. We find that the star formation rate density follows a similar scaling law with CNM column density to the total gas Kennicutt–Schmidt law. In the outer galaxy, we produce realistic vertical velocity dispersions in the H i purely from galactic dynamics, but our models do not predict CNM at the extremely large radii observed in H i absorption studies of the Milky Way. We suggest that extended spiral arms might produce isolated clumps of CNM at these radii.

     
    more » « less
  3. Abstract We investigate the cold and warm gas content, kinematics, and spatial distribution of six local massive elliptical galaxies to probe the origin of the multiphase gas in their atmospheres. We report new observations, including Stratospheric Observatory for Infrared Astronomy [C ii ], Atacama Large Millimeter/submillimeter Array CO, Multi Unit Spectroscopic Explorer (MUSE) H α +[N ii ], and Very Large Array (VLA) radio observations. These are complemented by a large suite of multiwavelength archival data sets, including thermodynamical properties of the hot gas and radio jets, which are leveraged to investigate the role of active galactic nucleus (AGN) feeding/feedback in regulating the multiphase gas content. Our galactic sample shows a significant diversity in cool gas content, spanning filamentary and rotating structures. In our noncentral galaxies, the distribution of such gas is often concentrated, at variance with the more extended features observed in central galaxies. Misalignment between the multiphase gas and stars suggest that stellar mass loss is not the primary driver. A fraction of the cool gas might be acquired via galaxy interactions, but we do not find quantitative evidence of mergers in most of our systems. Instead, key evidence supports the origin via condensation out of the diffuse halo. Comparing with chaotic cold accretion (CCA) simulations, we find that our cool gas-free galaxies are likely in the overheated phase of the self-regulated AGN cycle, while for our galaxies with cool gas, the k-plot and AGN power correlation corroborate the phase of CCA feeding in which the condensation rain is triggering more vigorous AGN heating. The related C-ratio further shows that central/noncentral galaxies are expected to generate an extended/inner rain, consistent with our sample. 
    more » « less
  4. ABSTRACT We characterize mass, momentum, energy, and metal outflow rates of multiphase galactic winds in a suite of FIRE-2 cosmological ‘zoom-in’ simulations from the Feedback in Realistic Environments (FIRE) project. We analyse simulations of low-mass dwarfs, intermediate-mass dwarfs, Milky Way-mass haloes, and high-redshift massive haloes. Consistent with previous work, we find that dwarfs eject about 100 times more gas from their interstellar medium (ISM) than they form in stars, while this mass ‘loading factor’ drops below one in massive galaxies. Most of the mass is carried by the hot phase (>105 K) in massive haloes and the warm phase (103−105 K) in dwarfs; cold outflows (<103 K) are negligible except in high-redshift dwarfs. Energy, momentum, and metal loading factors from the ISM are of order unity in dwarfs and significantly lower in more massive haloes. Hot outflows have 2−5 × higher specific energy than needed to escape from the gravitational potential of dwarf haloes; indeed, in dwarfs, the mass, momentum, and metal outflow rates increase with radius whereas energy is roughly conserved, indicating swept up halo gas. Burst-averaged mass loading factors tend to be larger during more powerful star formation episodes and when the inner halo is not virialized, but we see effectively no trend with the dense ISM gas fraction. We discuss how our results can guide future controlled numerical experiments that aim to elucidate the key parameters governing galactic winds and the resulting associated preventative feedback. 
    more » « less
  5. null (Ed.)
    Context. Inferences about dark matter, dark energy, and the missing baryons all depend on the accuracy of our model of large-scale structure evolution. In particular, with cosmological simulations in our model of the Universe, we trace the growth of structure, and visualize the build-up of bigger structures from smaller ones and of gaseous filaments connecting galaxy clusters. Aims. Here we aim to reveal the complexity of the large-scale structure assembly process in great detail and on scales from tens of kiloparsecs up to more than 10 Mpc with new sensitive large-scale observations from the latest generation of instruments. We also aim to compare our findings with expectations from our cosmological model. Methods. We used dedicated SRG/eROSITA performance verification (PV) X-ray, ASKAP/EMU Early Science radio, and DECam optical observations of a ~15 deg 2 region around the nearby interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process, the morphological complexity in the inner parts of the clusters, and the (re-)acceleration of plasma. We also used complementary Sunyaev-Zeldovich (SZ) effect data from the Planck survey and custom-made Galactic total (neutral plus molecular) hydrogen column density maps based on the HI4PI and IRAS surveys. We relate the observations to expectations from cosmological hydrodynamic simulations from the Magneticum suite. Results. We trace the irregular morphology of warm and hot gas of the main clusters from their centers out to well beyond their characteristic radii, r 200 . Between the two main cluster systems, we observe an emission bridge on large scale and with good spatial resolution. This bridge includes a known galaxy group but this can only partially explain the emission. Most gas in the bridge appears hot, but thanks to eROSITA’s unique soft response and large field of view, we discover some tantalizing hints for warm, truly primordial filamentary gas connecting the clusters. Several matter clumps physically surrounding the system are detected. For the “Northern Clump,” we provide evidence that it is falling towards A3391 from the X-ray hot gas morphology and radio lobe structure of its central AGN. Moreover, the shapes of these X-ray and radio structures appear to be formed by gas well beyond the virial radius, r 100 , of A3391, thereby providing an indirect way of probing the gas in this elusive environment. Many of the extended sources in the field detected by eROSITA are also known clusters or new clusters in the background, including a known SZ cluster at redshift z = 1. We find roughly an order of magnitude more cluster candidates than the SPT and ACT surveys together in the same area. We discover an emission filament north of the virial radius of A3391 connecting to the Northern Clump. Furthermore, the absorption-corrected eROSITA surface brightness map shows that this emission filament extends south of A3395 and beyond an extended X-ray-emitting object (the “Little Southern Clump”) towards another galaxy cluster, all at the same redshift. The total projected length of this continuous warm-hot emission filament is 15 Mpc, running almost 4 degrees across the entire eROSITA PV observation field. The Northern and Southern Filament are each detected at >4 σ . The Planck SZ map additionally appears to support the presence of both new filaments. Furthermore, the DECam galaxy density map shows galaxy overdensities in the same regions. Overall, the new datasets provide impressive confirmation of the theoretically expected structure formation processes on the individual system level, including the surrounding warm-hot intergalactic medium distribution; the similarities of features found in a similar system in the Magneticum simulation are striking. Our spatially resolved findings show that baryons indeed reside in large-scale warm-hot gas filaments with a clumpy structure. 
    more » « less