skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrated Blockchain and Cloud Computing Systems: A Systematic Survey, Solutions, and Challenges
Cloud computing is a network model of on-demand access for sharing configurable computing resource pools. Compared with conventional service architectures, cloud computing introduces new security challenges in secure service management and control, privacy protection, data integrity protection in distributed databases, data backup, and synchronization. Blockchain can be leveraged to address these challenges, partly due to the underlying characteristics such as transparency, traceability, decentralization, security, immutability, and automation. We present a comprehensive survey of how blockchain is applied to provide security services in the cloud computing model and we analyze the research trends of blockchain-related techniques in current cloud computing models. During the reviewing, we also briefly investigate how cloud computing can affect blockchain, especially about the performance improvements that cloud computing can provide for the blockchain. Our contributions include the following: (i) summarizing the possible architectures and models of the integration of blockchain and cloud computing and the roles of cloud computing in blockchain; (ii) classifying and discussing recent, relevant works based on different blockchain-based security services in the cloud computing model; (iii) simply investigating what improvements cloud computing can provide for the blockchain; (iv) introducing the current development status of the industry/major cloud providers in the direction of combining cloud and blockchain; (v) analyzing the main barriers and challenges of integrated blockchain and cloud computing systems; and (vi) providing recommendations for future research and improvement on the integration of blockchain and cloud systems.  more » « less
Award ID(s):
1736209
PAR ID:
10331589
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Computing Surveys
Volume:
54
Issue:
8
ISSN:
0360-0300
Page Range / eLocation ID:
1 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the last decade, network applications have grown exponentially, demanding high-speed interconnects. Unfortunately, chip manufacturers are approaching the upper limits of silicon-based computing with slow improvements in computational performance and energy efficiency. This trend has forced the industry to shift paradigms, moving from monolithic architectures to heterogeneous, domain-specific designs. Moreover, the ever-evolving threats compromise digital services and demand more scalable and flexible solutions to ensure service continuity in production networks. Smart Network Interface Cards (SmartNICs) are a product of this new paradigm, integrating domain-specific engines and general-purpose cores to offload various network infrastructure tasks, including those related to security. This paper provides a comprehensive overview of SmartNICs, with a particular focus on their role in strengthening network defenses. It introduces SmartNIC technology and presents a taxonomy of security applications offloaded to SmartNICs, categorized into Intrusion Detection and Prevention Systems (IDS/IPS), defenses against volumetric attacks, and data confidentiality mechanisms. Additionally, the paper explores vulnerabilities associated with adopting SmartNICs in the cloud, examining the threat model and reviewing proposed remediations in the literature. Finally, it discusses challenges and future trends in SmartNIC security applications, highlighting current initiatives and open research areas. 
    more » « less
  2. In the last few years, Cloud computing technology has benefited many organizations that have embraced it as a basis for revamping the IT infrastructure. Cloud computing utilizes Internet capabilities in order to use other computing resources. Amazon Web Services (AWS) is one of the most widely used cloud providers that leverages the endless computing capabilities that the cloud technology has to offer. AWS is continuously evolving to offer a variety of services, including but not limited to, infrastructure as a service (IaaS), platform as a service (PaaS) and packaged software as a service. Among the other important services offered by AWS is Video Surveillance as a Service (VSaaS) that is a hosted cloud-based video surveillance service. Even though this technology is complex and widely used, some security experts have pointed out that some of its vulnerabilities can be exploited in launching attacks aimed at cloud technologies. In this paper, we present a holistic security analysis of cloud-based video surveillance systems by examining the vulnerabilities, threats, and attacks that these technologies are susceptible to. We illustrate our findings by implementing several of these attacks on a test bed representing an AWS-based video surveillance system. The main contributions of our paper are: (1) we provided a holistic view of the security model of cloud based video surveillance summarizing the underlying threats, vulnerabilities and mitigation techniques (2) we proposed a novel taxonomy of attacks targeting such systems (3) we implemented several related attacks targeting cloud-based video surveillance system based on an AWS test environment and provide some guidelines for attack mitigation. The outcome of the conducted experiments showed that the vulnerabilities of the Internet Protocol (IP) and other protocols granted access to unauthorized VSaaS files. We aim that our proposed work on the security of cloud-based video surveillance systems will serve as a reference for cybersecurity researchers and practitioners who aim to conduct research in this field. 
    more » « less
  3. Emerging Distributed AI systems are revolutionizing big data computing and data processing capabilities with growing economic and societal impact. However, recent studies have identified new attack surfaces and risks caused by security, privacy, and fairness issues in AI systems. In this paper, we review representative techniques, algorithms, and theoretical foundations for trustworthy distributed AI through robustness guarantee, privacy protection, and fairness awareness in distributed learning. We first provide a brief overview of alternative architectures for distributed learning, discuss inherent vulnerabilities for security, privacy, and fairness of AI algorithms in distributed learning, and analyze why these problems are present in distributed learning regardless of specific architectures. Then we provide a unique taxonomy of countermeasures for trustworthy distributed AI, covering (1) robustness to evasion attacks and irregular queries at inference, and robustness to poisoning attacks, Byzantine attacks, and irregular data distribution during training; (2) privacy protection during distributed learning and model inference at deployment; and (3) AI fairness and governance with respect to both data and models. We conclude with a discussion on open challenges and future research directions toward trustworthy distributed AI, such as the need for trustworthy AI policy guidelines, the AI responsibility-utility co-design, and incentives and compliance. 
    more » « less
  4. The rapid development of three-dimensional (3D) acquisition technology based on 3D sensors provides a large volume of data, which are often represented in the form of point clouds. Point cloud representation can preserve the original geometric information along with associated attributes in a 3D space. Therefore, it has been widely adopted in many scene-understanding-related applications such as virtual reality (VR) and autonomous driving. However, the massive amount of point cloud data aggregated from distributed 3D sensors also poses challenges for secure data collection, management, storage, and sharing. Thanks to the characteristics of decentralization and security, Blockchain has great potential to improve point cloud services and enhance security and privacy preservation. Inspired by the rationales behind the software-defined network (SDN) technology, this paper envisions SAUSA, a Blockchain-based authentication network that is capable of recording, tracking, and auditing the access, usage, and storage of 3D point cloud datasets in their life-cycle in a decentralized manner. SAUSA adopts an SDN-inspired point cloud service architecture, which allows for efficient data processing and delivery to satisfy diverse quality-of-service (QoS) requirements. A Blockchain-based authentication framework is proposed to ensure security and privacy preservation in point cloud data acquisition, storage, and analytics. Leveraging smart contracts for digitizing access control policies and point cloud data on the Blockchain, data owners have full control of their 3D sensors and point clouds. In addition, anyone can verify the authenticity and integrity of point clouds in use without relying on a third party. Moreover, SAUSA integrates a decentralized storage platform to store encrypted point clouds while recording references of raw data on the distributed ledger. Such a hybrid on-chain and off-chain storage strategy not only improves robustness and availability, but also ensures privacy preservation for sensitive information in point cloud applications. A proof-of-concept prototype is implemented and tested on a physical network. The experimental evaluation validates the feasibility and effectiveness of the proposed SAUSA solution. 
    more » « less
  5. null (Ed.)
    One of the most costly factors in providing a global computing infrastructure such as the WLCG is the human effort in deployment, integration, and operation of the distributed services supporting collaborative computing, data sharing and delivery, and analysis of extreme scale datasets. Furthermore, the time required to roll out global software updates, introduce new service components, or prototype novel systems requiring coordinated deployments across multiple facilities is often increased by communication latencies, staff availability, and in many cases expertise required for operations of bespoke services. While the WLCG (and distributed systems implemented throughout HEP) is a global service platform, it lacks the capability and flexibility of a modern platform-as-a-service including continuous integration/continuous delivery (CI/CD) methods, development-operations capabilities (DevOps, where developers assume a more direct role in the actual production infrastructure), and automation. Most importantly, tooling which reduces required training, bespoke service expertise, and the operational effort throughout the infrastructure, most notably at the resource endpoints (sites), is entirely absent in the current model. In this paper, we explore ideas and questions around potential NoOps models in this context: what is realistic given organizational policies and constraints? How should operational responsibility be organized across teams and facilities? What are the technical gaps? What are the social and cybersecurity challenges? Conversely what advantages does a NoOps model deliver for innovation and for accelerating the pace of delivery of new services needed for the HL-LHC era? We will describe initial work along these lines in the context of providing a data delivery network supporting IRIS-HEP DOMA R&D. 
    more » « less