skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards a NoOps Model for WLCG
One of the most costly factors in providing a global computing infrastructure such as the WLCG is the human effort in deployment, integration, and operation of the distributed services supporting collaborative computing, data sharing and delivery, and analysis of extreme scale datasets. Furthermore, the time required to roll out global software updates, introduce new service components, or prototype novel systems requiring coordinated deployments across multiple facilities is often increased by communication latencies, staff availability, and in many cases expertise required for operations of bespoke services. While the WLCG (and distributed systems implemented throughout HEP) is a global service platform, it lacks the capability and flexibility of a modern platform-as-a-service including continuous integration/continuous delivery (CI/CD) methods, development-operations capabilities (DevOps, where developers assume a more direct role in the actual production infrastructure), and automation. Most importantly, tooling which reduces required training, bespoke service expertise, and the operational effort throughout the infrastructure, most notably at the resource endpoints (sites), is entirely absent in the current model. In this paper, we explore ideas and questions around potential NoOps models in this context: what is realistic given organizational policies and constraints? How should operational responsibility be organized across teams and facilities? What are the technical gaps? What are the social and cybersecurity challenges? Conversely what advantages does a NoOps model deliver for innovation and for accelerating the pace of delivery of new services needed for the HL-LHC era? We will describe initial work along these lines in the context of providing a data delivery network supporting IRIS-HEP DOMA R&D.  more » « less
Award ID(s):
1724821
PAR ID:
10285983
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
Volume:
245
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)
    The Scalable Systems Laboratory (SSL), part of the IRIS-HEP Software Institute, provides Institute participants and HEP software developers generally with a means to transition their R&D from conceptual toys to testbeds to production-scale prototypes. The SSL enables tooling, infrastructure, and services supporting innovation of novel analysis and data architectures, development of software elements and tool-chains, reproducible functional and scalability testing of service components, and foundational systems R&D for accelerated services developed by the Institute. The SSL is constructed with a core team having expertise in scale testing and deployment of services across a wide range of cyberinfrastructure. The core team embeds and partners with other areas in the Institute, and with LHC and other HEP development and operations teams as appropriate, to define investigations and required service deployment patterns. We describe the approach and experiences with early application deployments, including analysis platforms and intelligent data delivery systems. 
    more » « less
  2. Biscarat, C.; Campana, S.; Hegner, B.; Roiser, S.; Rovelli, C.I.; Stewart, G.A. (Ed.)
    In High Energy Physics facilities that provide High Performance Computing environments provide an opportunity to efficiently perform the statistical inference required for analysis of data from the Large Hadron Collider, but can pose problems with orchestration and efficient scheduling. The compute architectures at these facilities do not easily support the Python compute model, and the configuration scheduling of batch jobs for physics often requires expertise in multiple job scheduling services. The combination of the pure-Python libraries pyhf and funcX reduces the common problem in HEP analyses of performing statistical inference with binned models, that would traditionally take multiple hours and bespoke scheduling, to an on-demand (fitting) “function as a service” that can scalably execute across workers in just a few minutes, offering reduced time to insight and inference. We demonstrate execution of a scalable workflow using funcX to simultaneously fit 125 signal hypotheses from a published ATLAS search for new physics using pyhf with a wall time of under 3 minutes. We additionally show performance comparisons for other physics analyses with openly published probability models and argue for a blueprint of fitting as a service systems at HPC centers. 
    more » « less
  3. De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)
    Predicting the performance of various infrastructure design options in complex federated infrastructures with computing sites distributed over a wide area network that support a plethora of users and workflows, such as the Worldwide LHC Computing Grid (WLCG), is not trivial. Due to the complexity and size of these infrastructures, it is not feasible to deploy experimental test-beds at large scales merely for the purpose of comparing and evaluating alternate designs. An alternative is to study the behaviours of these systems using simulation. This approach has been used successfully in the past to identify efficient and practical infrastructure designs for High Energy Physics (HEP). A prominent example is the Monarc simulation framework, which was used to study the initial structure of the WLCG. New simulation capabilities are needed to simulate large-scale heterogeneous computing systems with complex networks, data access and caching patterns. A modern tool to simulate HEP workloads that execute on distributed computing infrastructures based on the SimGrid and WRENCH simulation frameworks is outlined. Studies of its accuracy and scalability are presented using HEP as a case-study. Hypothetical adjustments to prevailing computing architectures in HEP are studied providing insights into the dynamics of a part of the WLCG and candidates for improvements. 
    more » « less
  4. Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)
    High Energy Physics (HEP) experiments rely on the networks as one of the critical parts of their infrastructure both within the participating laboratories and sites as well as globally to interconnect the sites, data centres and experiments instrumentation. Network virtualisation and programmable networks are two key enablers that facilitate agile, fast and more economical network infrastructures as well as service development, deployment and provisioning. Adoption of these technologies by HEP sites and experiments will allow them to design more scalable and robust networks while decreasing the overall cost and improving the effectiveness of the resource utilization. The primary challenge we currently face is ensuring that WLCG and its constituent collaborations will have the networking capabilities required to most effectively exploit LHC data for the lifetime of the LHC. In this paper we provide a high level summary of the HEPiX NFV Working Group report that explored some of the novel network capabilities that could potentially be deployment in time for HL-LHC. 
    more » « less
  5. Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)
    WLCG relies on the network as a critical part of its infrastructure and therefore needs to guarantee effective network usage and prompt detection and resolution of any network issues including connection failures, congestion and traffic routing. The OSG Networking Area, in partnership with WLCG, is focused on being the primary source of networking information for its partners and constituents. It was established to ensure sites and experiments can better understand and fix networking issues, while providing an analytics platform that aggregates network monitoring data with higher level workload and data transfer services. This has been facilitated by the global network of the perfSONAR instances that have been commissioned and are operated in collaboration with WLCG Network Throughput Working Group. An additional important update is the inclusion of the newly funded NSF project SAND (Service Analytics and Network Diagnosis) which is focusing on network analytics. This paper describes the current state of the network measurement and analytics platform and summarises the activities taken by the working group and our collaborators. This includes the progress being made in providing higher level analytics, alerting and alarming from the rich set of network metrics we are gathering. 
    more » « less