There has been an increasing interest in using neural networks in closed-loop control systems to improve performance and reduce computational costs for on-line implementation. However, providing safety and stability guarantees for these systems is challenging due to the nonlinear and compositional structure of neural networks. In this paper, we propose a novel forward reachability analysis method for the safety verification of linear time-varying systems with neural networks in feedback interconnection. Our technical approach relies on abstracting the nonlinear activation functions by quadratic constraints, which leads to an outer-approximation of forward reachable sets of the closed-loop system. We show that wemore »
This content will become publicly available on December 14, 2022
An Introduction to Neural Network Analysis via Semidefinite Programming
Neural networks have become increasingly effective at many difficult machine learning tasks. However, the nonlinear and large-scale nature of neural networks makes them hard to analyze, and, therefore, they are mostly used as blackbox models without formal guarantees. This issue becomes even more complicated when neural networks are used in learning-enabled closed-loop systems, where a small perturbation can substantially impact the system being controlled. Therefore, it is of utmost importance to develop tools that can provide useful certificates of stability, safety, and robustness for neural network-driven systems.In this overview, we present a convex optimization framework for the analysis of neural networks. The main idea is to abstract hard-to-analyze components of a neural network (e.g., the nonlinear activation functions) with the formalism of quadratic constraints. This abstraction allows us to reason about various properties of neural networks (safety, robustness, generalization, stability in closed-loop settings, etc.) via semidefinite programming.
- Award ID(s):
- 1837210
- Publication Date:
- NSF-PAR ID:
- 10331594
- Journal Name:
- IEEE Conference on Decision and Control
- Page Range or eLocation-ID:
- 6341 to 6350
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neural network approximations have become attractive to compress data for automation and autonomy algorithms for use on storage-limited and processing-limited aerospace hard-ware. However, unless these neural network approximations can be exhaustively verified to be safe, they cannot be certified for use on aircraft. This manuscript evaluates the safety of a neural network approximation of the unmanned Airborne Collision Avoidance System (ACAS Xu). First, a set of ACAS Xu closed-loop benchmarks is introduced, based on a well-known open-loop benchmark, that are challenging to analyze for current verification tools due to the complexity and high-dimensional plant dynamics. Additionally, the system of switchingmore »
-
The ACAS X family of aircraft collision avoidance systems uses large numeric lookup tables to make decisions. Recent work used a deep neural network to approximate and compress a collision avoidance table, and simulations showed that the neural network performance was comparable to the original table. Consequently, neural network representations are being explored for use on small aircraft with limited storage capacity. However, the black-box nature of deep neural networks raises safety concerns because simulation results are not exhaustive. This work takes steps towards addressing these concerns by applying formal methods to analyze the behavior of collision avoidance neural networksmore »
-
Tight estimation of the Lipschitz constant for deep neural networks (DNNs) is useful in many applications ranging from robustness certification of classifiers to stability analysis of closed-loop systems with reinforcement learning controllers. Existing methods in the literature for estimating the Lipschitz constant suffer from either lack of accuracy or poor scalability. In this paper, we present a convex optimization framework to compute guaranteed upper bounds on the Lipschitz constant of DNNs both accurately and efficiently. Our main idea is to interpret activation functions as gradients of convex potential functions. Hence, they satisfy certain properties that can be described by quadraticmore »
-
This paper presents Verisig, a hybrid system approach to verifying safety properties of closed-loop systems using neural networks as controllers. We focus on sigmoid-based networks and exploit the fact that the sigmoid is the solution to a quadratic differential equation, which allows us to transform the neural network into an equivalent hybrid system. By composing the network's hybrid system with the plant's, we transform the problem into a hybrid system verification problem which can be solved using state-of-the-art reachability tools. We show that reachability is decidable for networks with one hidden layer and decidable for general networks if Schanuel's conjecturemore »