skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Introduction to Neural Network Analysis via Semidefinite Programming
Neural networks have become increasingly effective at many difficult machine learning tasks. However, the nonlinear and large-scale nature of neural networks makes them hard to analyze, and, therefore, they are mostly used as blackbox models without formal guarantees. This issue becomes even more complicated when neural networks are used in learning-enabled closed-loop systems, where a small perturbation can substantially impact the system being controlled. Therefore, it is of utmost importance to develop tools that can provide useful certificates of stability, safety, and robustness for neural network-driven systems.In this overview, we present a convex optimization framework for the analysis of neural networks. The main idea is to abstract hard-to-analyze components of a neural network (e.g., the nonlinear activation functions) with the formalism of quadratic constraints. This abstraction allows us to reason about various properties of neural networks (safety, robustness, generalization, stability in closed-loop settings, etc.) via semidefinite programming.  more » « less
Award ID(s):
1837210
PAR ID:
10331594
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Conference on Decision and Control
Page Range / eLocation ID:
6341 to 6350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been an increasing interest in using neural networks in closed-loop control systems to improve performance and reduce computational costs for on-line implementation. However, providing safety and stability guarantees for these systems is challenging due to the nonlinear and compositional structure of neural networks. In this paper, we propose a novel forward reachability analysis method for the safety verification of linear time-varying systems with neural networks in feedback interconnection. Our technical approach relies on abstracting the nonlinear activation functions by quadratic constraints, which leads to an outer-approximation of forward reachable sets of the closed-loop system. We show that we can compute these approximate reachable sets using semidefinite programming. We illustrate our method in a quadrotor example, in which we first approximate a nonlinear model predictive controller via a deep neural network and then apply our analysis tool to certify finite-time reachability and constraint satisfaction of the closed-loop system. 
    more » « less
  2. Neural network approximations have become attractive to compress data for automation and autonomy algorithms for use on storage-limited and processing-limited aerospace hardware. However, unless these neural network approximations can be exhaustively verified to be safe, they cannot be certified for use on aircraft. An example of such systems is the unmanned Airborne Collision Avoidance System (ACAS) Xu, which is a very popular benchmark for open-loop neural network control system verification tools. This paper proposes a new closed-loop extension of this benchmark, which consists of a set of 10 closed-loop properties selected to evaluate the safety of an ownship aircraft in the presence of a co-altitude intruder aircraft. These closed-loop safety properties are used to evaluate five of the 45 neural networks that comprise the ACAS Xu benchmark (corresponding to co-altitude cases) as well as the switching logic between the five neural networks. The combination of nonlinear dynamics and switching between five neural networks is a challenging verification task accomplished with star-set reachability methods in two verification tools. The safety of the ownship aircraft under initial position uncertainty is guaranteed in every scenario proposed. 
    more » « less
  3. null (Ed.)
    Neural network approximations have become attractive to compress data for automation and autonomy algorithms for use on storage-limited and processing-limited aerospace hard-ware. However, unless these neural network approximations can be exhaustively verified to be safe, they cannot be certified for use on aircraft. This manuscript evaluates the safety of a neural network approximation of the unmanned Airborne Collision Avoidance System (ACAS Xu). First, a set of ACAS Xu closed-loop benchmarks is introduced, based on a well-known open-loop benchmark, that are challenging to analyze for current verification tools due to the complexity and high-dimensional plant dynamics. Additionally, the system of switching and classification-based nature of the ACAS Xu neural network system adds another challenge to existing analysis methods. Experimental evaluation shows selected scenarios where the safety of the ownship aircraft’s neural network action selection is assessed with respect to an intruder aircraft over time in a closed loop control evaluation. Set-based analysis of the closed-loop benchmarks is performed using the Star Set representation using both the NNV tool and the nnenum tool, demonstrating that set-based analysis is becoming increasingly feasible for the verification of this class of systems. 
    more » « less
  4. The ACAS X family of aircraft collision avoidance systems uses large numeric lookup tables to make decisions. Recent work used a deep neural network to approximate and compress a collision avoidance table, and simulations showed that the neural network performance was comparable to the original table. Consequently, neural network representations are being explored for use on small aircraft with limited storage capacity. However, the black-box nature of deep neural networks raises safety concerns because simulation results are not exhaustive. This work takes steps towards addressing these concerns by applying formal methods to analyze the behavior of collision avoidance neural networks both in isolation and in a closed-loop system. We evaluate our approach on a specific set of collision avoidance networks and show that even though the networks are not always locally robust, their closed-loop behavior ensures that they will not reach an unsafe (collision) state. 
    more » « less
  5. This work presents a methodology for analysis and control of nonlinear fluid systems using neural networks. The approach is demonstrated in four different study cases: the Lorenz system, a modified version of the Kuramoto-Sivashinsky equation, a streamwise-periodic two-dimensional channel flow, and a confined cylinder flow. Neural networks are trained as models to capture the complex system dynamics and estimate equilibrium points through a Newton method, enabled by back-propagation. These neural network surrogate models (NNSMs) are leveraged to train a second neural network, which is designed to act as a stabilizing closed-loop controller. The training process employs a recurrent approach, whereby the NNSM and the neural network controller are chained in closed loop along a finite time horizon. By cycling through phases of combined random open-loop actuation and closed-loop control, an iterative training process is introduced to overcome the lack of data near equilibrium points. This approach improves the accuracy of the models in the most critical region for achieving stabilization. Through the use of L1 regularization within loss functions, the NNSMs can also guide optimal sensor placement, reducing the number of sensors from an initial candidate set. The data sets produced during the iterative training process are also leveraged for conducting a linear stability analysis through a modified dynamic mode decomposition approach. The results demonstrate the effectiveness of computationally inexpensive neural networks in modeling, controlling, and enabling stability analysis of nonlinear systems, providing insights into the system behavior and offering potential for stabilization of complex fluid systems. 
    more » « less