This paper extends the star set reachability approach to verify the robustness of feed-forward neural networks (FNNs) with sigmoidal activation functions such as Sigmoid and TanH. The main drawbacks of the star set approach in Sigmoid/TanH FNN verification are scalability, feasibility, and optimality issues in some cases due to the linear programming solver usage. We overcome this challenge by proposing a relaxed star (RStar) with symbolic intervals, which allows the usage of the back-substitution technique in DeepPoly to find bounds when overapproximating activation functions while maintaining the valuable features of a star set. RStar can overapproximate a sigmoidal activation function using four linear constraints (RStar4) or two linear constraints (RStar2), or only the output bounds (RStar0). We implement our RStar reachability algorithms in NNV and compare them to DeepPoly via robustness verification of image classification DNNs benchmarks. The experimental results show that the original star approach (i.e., no relaxation) is the least conservative of all methods yet the slowest. RStar4 is computationally much faster than the original star method and is the second least conservative approach. It certifies up to 40% more images against adversarial attacks than DeepPoly and on average 51 times faster than the star set. Last but not least, RStar0 is the most conservative method, which could only verify two cases for the CIFAR10 small Sigmoid network,δ= 0.014. However, it is the fastest method that can verify neural networks up to 3528 times faster than the star set and up to 46 times faster than DeepPoly in our evaluation.
more »
« less
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Tight estimation of the Lipschitz constant for deep neural networks (DNNs) is useful in many applications ranging from robustness certification of classifiers to stability analysis of closed-loop systems with reinforcement learning controllers. Existing methods in the literature for estimating the Lipschitz constant suffer from either lack of accuracy or poor scalability. In this paper, we present a convex optimization framework to compute guaranteed upper bounds on the Lipschitz constant of DNNs both accurately and efficiently. Our main idea is to interpret activation functions as gradients of convex potential functions. Hence, they satisfy certain properties that can be described by quadratic constraints. This particular description allows us to pose the Lipschitz constant estimation problem as a semidefinite program (SDP). The resulting SDP can be adapted to increase either the estimation accuracy (by capturing the interaction between activation functions of different layers) or scalability (by decomposition and parallel implementation). We illustrate the utility of our approach with a variety of experiments on randomly generated networks and on classifiers trained on the MNIST and Iris datasets. In particular, we experimentally demonstrate that our Lipschitz bounds are the most accurate compared to those in the literature. We also study the impact of adversarial training methods on the Lipschitz bounds of the resulting classifiers and show that our bounds can be used to efficiently provide robustness guarantees.
more »
« less
- Award ID(s):
- 1837210
- PAR ID:
- 10331602
- Date Published:
- Journal Name:
- Advances in Neural Information Processing Systems 32 (NeurIPS 2019)
- Volume:
- 32
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The framework of Integral Quadratic Constraints (IQC) introduced by Lessard et al. (2014) reduces the com- putation of upper bounds on the convergence rate of several optimization algorithms to semi-definite programming (SDP). In particular, this technique was applied to Nesterov’s accelerated method (NAM). For quadratic functions, this SDP was explicitly solved leading to a new bound on the convergence rate of NAM, and for arbitrary strongly convex functions it was shown numerically that IQC can improve bounds from Nesterov (2004). Unfortunately, an explicit analytic solution to the SDP was not provided. In this paper, we provide such an analytical solution, obtaining a new general and explicit upper bound on the convergence rate of NAM, which we further optimize over its parameters. To the best of our knowledge, this is the best, and explicit, upper bound on the convergence rate of NAM for strongly convex functions.more » « less
-
The framework of Integral Quadratic Constraints (IQC) introduced by Lessard et al. (2014) reduces the com- putation of upper bounds on the convergence rate of several optimization algorithms to semi-definite programming (SDP). In particular, this technique was applied to Nesterov’s accelerated method (NAM). For quadratic functions, this SDP was explicitly solved leading to a new bound on the convergence rate of NAM, and for arbitrary strongly convex functions it was shown numerically that IQC can improve bounds from Nesterov (2004). Unfortunately, an explicit analytic solution to the SDP was not provided. In this paper, we provide such an analytical solution, obtaining a new general and explicit upper bound on the convergence rate of NAM, which we further optimize over its parameters. To the best of our knowledge, this is the best, and explicit, upper bound on the convergence rate of NAM for strongly convex functions.more » « less
-
null (Ed.)A robustness certificate is the minimum distance of a given input to the decision boundary of the classifier (or its lower bound). For {\it any} input perturbations with a magnitude smaller than the certificate value, the classification output will provably remain unchanged. Exactly computing the robustness certificates for neural networks is difficult since it requires solving a non-convex optimization. In this paper, we provide computationally-efficient robustness certificates for neural networks with differentiable activation functions in two steps. First, we show that if the eigenvalues of the Hessian of the network are bounded, we can compute a robustness certificate in the l2 norm efficiently using convex optimization. Second, we derive a computationally-efficient differentiable upper bound on the curvature of a deep network. We also use the curvature bound as a regularization term during the training of the network to boost its certified robustness. Putting these results together leads to our proposed {\bf C}urvature-based {\bf R}obustness {\bf C}ertificate (CRC) and {\bf C}urvature-based {\bf R}obust {\bf T}raining (CRT). Our numerical results show that CRT leads to significantly higher certified robust accuracy compared to interval-bound propagation (IBP) based training. We achieve certified robust accuracy 69.79\%, 57.78\% and 53.19\% while IBP-based methods achieve 44.96\%, 44.74\% and 44.66\% on 2,3 and 4 layer networks respectively on the MNIST-dataset.more » « less
-
Complete verification of deep neural networks (DNNs) can exactly determine whether the DNN satisfies a desired trustworthy property (e.g., robustness, fairness) on an infinite set of inputs or not. Despite the tremendous progress to improve the scalability of complete verifiers over the years on individual DNNs, they are inherently inefficient when a deployed DNN is updated to improve its inference speed or accuracy. The inefficiency is because the expensive verifier needs to be run from scratch on the updated DNN. To improve efficiency, we propose a new, general framework for incremental and complete DNN verification based on the design of novel theory, data structure, and algorithms. Our contributions implemented in a tool named IVAN yield an overall geometric mean speedup of 2.4x for verifying challenging MNIST and CIFAR10 classifiers and a geometric mean speedup of 3.8x for the ACAS-XU classifiers over the state-of-the-art baselines.more » « less
An official website of the United States government

