skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The mean free path of ionizing photons at 5 < z < 6: evidence for rapid evolution near reionization
ABSTRACT The mean free path of ionizing photons, λmfp, is a key factor in the photoionization of the intergalactic medium (IGM). At z ≳ 5, however, λmfp may be short enough that measurements towards QSOs are biased by the QSO proximity effect. We present new direct measurements of λmfp that address this bias and extend up to z ∼ 6 for the first time. Our measurements at z ∼ 5 are based on data from the Giant Gemini GMOS survey and new Keck LRIS observations of low-luminosity QSOs. At z ∼ 6 we use QSO spectra from Keck ESI and VLT X-Shooter. We measure $$\lambda _{\rm mfp} = 9.09^{+1.62}_{-1.28}$$ proper Mpc and $$0.75^{+0.65}_{-0.45}$$ proper Mpc (68 per cent confidence) at z = 5.1 and 6.0, respectively. The results at z = 5.1 are consistent with existing measurements, suggesting that bias from the proximity effect is minor at this redshift. At z = 6.0, however, we find that neglecting the proximity effect biases the result high by a factor of two or more. Our measurement at z = 6.0 falls well below extrapolations from lower redshifts, indicating rapid evolution in λmfp over 5 < z < 6. This evolution disfavours models in which reionization ended early enough that the IGM had time to fully relax hydrodynamically by z = 6, but is qualitatively consistent with models wherein reionization completed at z = 6 or even significantly later. Our mean free path results are most consistent with late reionization models wherein the IGM is still 20 per cent neutral at z = 6, although our measurement at z = 6.0 is even lower than these models prefer.  more » « less
Award ID(s):
2045600 1751404
PAR ID:
10331606
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
508
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1853 to 1869
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a new investigation of the intergalactic medium (IGM) near the end of reionization using “dark gaps” in the Ly α forest. Using spectra of 55 QSOs at z em > 5.5, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Ly α forest where the transmission averaged over 1 comoving h −1 Mpc bins falls below 5%. Nine ultralong ( L > 80 h −1 Mpc) dark gaps are identified at z < 6. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than 30 h −1 Mpc, F 30 , as a function of redshift. We measure F 30 ≃ 0.9, 0.6, and 0.15 at z = 6.0, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to z ≃5.3. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at z ≲6 are also potentially consistent with the data. Overall, our results suggest that signatures of reionization in the form of islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least z ≃ 5.3. 
    more » « less
  2. Abstract We present a new investigation of the intergalactic medium near reionization using dark gaps in the Lyβforest. With its lower optical depth, Lyβoffers a potentially more sensitive probe to any remaining neutral gas compared to the commonly used Lyαline. We identify dark gaps in the Lyβforest using spectra of 42 QSOs atzem> 5.5, including new data from the XQR-30 VLT Large Programme. Approximately 40% of these QSO spectra exhibit dark gaps longer than 10h−1Mpc atz≃ 5.8. By comparing the results to predictions from simulations, we find that the data are broadly consistent both with models where fluctuations in the Lyαforest are caused solely by ionizing ultraviolet background fluctuations and with models that include large neutral hydrogen patches atz< 6 due to a late end to reionization. Of particular interest is a very long (L= 28h−1Mpc) and dark (τeff≳ 6) gap persisting down toz≃ 5.5 in the Lyβforest of thez= 5.85 QSO PSO J025−11. This gap may support late reionization models with a volume-weighted average neutral hydrogen fraction of 〈xH I〉 ≳ 5% byz= 5.6. Finally, we infer constraints on 〈xH I〉 over 5.5 ≲z≲ 6.0 based on the observed Lyβdark gap length distribution and a conservative relationship between gap length and neutral fraction derived from simulations. We find 〈xH I〉 ≤ 0.05, 0.17, and 0.29 atz≃ 5.55, 5.75, and 5.95, respectively. These constraints are consistent with models where reionization ends significantly later thanz= 6. 
    more » « less
  3. Abstract The mean free path of ionizing photons,λmfp, is a critical parameter for modeling the intergalactic medium (IGM) both during and after reionization. We present direct measurements ofλmfpfrom QSO spectra over the redshift range 5 <z< 6, including the first measurements atz≃ 5.3 and 5.6. Our sample includes data from the XQR-30 VLT large program, as well as new Keck/ESI observations of QSOs nearz∼ 5.5, for which we also acquire new [Cii] 158μm redshifts with ALMA. By measuring the Lyman continuum transmission profile in stacked QSO spectra, we find λ mfp = 9.33 1.80 + 2.06 , 5.40 1.40 + 1.47 , 3.31 1.34 + 2.74 , and 0.81 0.48 + 0.73 pMpc atz= 5.08, 5.31, 5.65, and 5.93, respectively. Our results demonstrate thatλmfpincreases steadily and rapidly with time over 5 <z< 6. Notably, we find thatλmfpdeviates significantly from predictions based on a fully ionized and relaxed IGM as late asz= 5.3. By comparing our results to model predictions and indirectλmfpconstraints based on IGM Lyαopacity, we find that the evolution ofλmfpis consistent with scenarios wherein the IGM is still undergoing reionization and/or retains large fluctuations in the ionizing UV background well below redshift 6. 
    more » « less
  4. ABSTRACT We search for ultraluminous Quasi-Stellar Objects (QSOs) at high redshift using photometry from the SkyMapper Southern Survey Data Release 3 (DR3), in combination with 2MASS, VHS DR6, VIKING DR5, AllWISE, and CatWISE2020, as well as parallaxes and proper motions from Gaia DR2 and eDR3. We report 142 newly discovered Southern QSOs at 3.8 < z < 5.5, of which 126 have M145 < −27 AB mag and are found in a search area of 14 486 deg2. This Southern sample, utilizing the Gaia astrometry to offset wider photometric colour criteria, achieves unprecedented completeness for an ultraluminous QSO search at high redshift. In combination with already known QSOs, we construct a sample that is >80 per cent complete for M145 < −27.33 AB mag at z = 4.7 and for M145 < −27.73 AB mag at z = 5.4. We derive the bright end of the QSO luminosity function at rest frame 145 nm for z = 4.7–5.4 and measure its slope to be β = −3.60 ± 0.37 and β = −3.38 ± 0.32 for two different estimates of the faint-end QSO density adopted from the literature. We also present the first z ∼ 5 QSO luminosity function at rest frame 300 nm. 
    more » « less
  5. ABSTRACT The attenuation of Lyα photons by neutral hydrogen in the intergalactic medium (IGM) at z ≳ 5 continues to be a powerful probe for studying the epoch of reionization. Given a framework to estimate the intrinsic (true) Lyα emission of high-z sources, one can infer the ionization state of the IGM during reionization. In this work, we use the enlarged XQR-30 sample of 42 high-resolution and high signal-to-noise quasar spectra between $$5.8\lesssim \, z\lesssim \, 6.6$$ obtained with VLT/X-shooter to place constraints on the IGM neutral fraction. This is achieved using our existing Bayesian QSO reconstruction framework which accounts for uncertainties such as the: (i) posterior distribution of predicted intrinsic Lyα emission profiles (obtained via covariance matrix reconstruction of the Lyα and N v emission lines from unattenuated high-ionization emission line profiles; C iv, Si iv  + O iv], and C iii]) and (ii) distribution of ionized regions within the IGM using synthetic damping wing profiles drawn from a 1.63 Gpc3 reionization simulation. Following careful quality control, we used 23 of the 42 available QSOs to obtain constraints/limits on the IGM neutral fraction during the tail-end of reionization. Our median and 68th percentile constraints on the IGM neutral fraction are: $$0.20\substack{+0.14 -0.12}$$ and $$0.29\substack{+0.14 -0.13}$$ at z = 6.15 and 6.35. Further, we also report 68th percentile upper limits of $$\bar{x}_{\mathrm{H\, {\small I}}{}} \lt 0.21$$, 0.20, 0.21, and 0.18 at z = 5.8, 5.95, 6.05, and 6.55. These results imply reionization is still ongoing at $$5.8\lesssim \, z\lesssim \, 6.55$$, consistent with previous results from XQR-30 (dark fraction and Lyα forest) along with other observational probes considered in the literature. 
    more » « less