skip to main content


Title: The mean free path of ionizing photons at 5 < z < 6: evidence for rapid evolution near reionization
ABSTRACT The mean free path of ionizing photons, λmfp, is a key factor in the photoionization of the intergalactic medium (IGM). At z ≳ 5, however, λmfp may be short enough that measurements towards QSOs are biased by the QSO proximity effect. We present new direct measurements of λmfp that address this bias and extend up to z ∼ 6 for the first time. Our measurements at z ∼ 5 are based on data from the Giant Gemini GMOS survey and new Keck LRIS observations of low-luminosity QSOs. At z ∼ 6 we use QSO spectra from Keck ESI and VLT X-Shooter. We measure $\lambda _{\rm mfp} = 9.09^{+1.62}_{-1.28}$ proper Mpc and $0.75^{+0.65}_{-0.45}$ proper Mpc (68 per cent confidence) at z = 5.1 and 6.0, respectively. The results at z = 5.1 are consistent with existing measurements, suggesting that bias from the proximity effect is minor at this redshift. At z = 6.0, however, we find that neglecting the proximity effect biases the result high by a factor of two or more. Our measurement at z = 6.0 falls well below extrapolations from lower redshifts, indicating rapid evolution in λmfp over 5 < z < 6. This evolution disfavours models in which reionization ended early enough that the IGM had time to fully relax hydrodynamically by z = 6, but is qualitatively consistent with models wherein reionization completed at z = 6 or even significantly later. Our mean free path results are most consistent with late reionization models wherein the IGM is still 20 per cent neutral at z = 6, although our measurement at z = 6.0 is even lower than these models prefer.  more » « less
Award ID(s):
2045600 1751404
NSF-PAR ID:
10331606
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
508
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1853 to 1869
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a new investigation of the intergalactic medium (IGM) near the end of reionization using “dark gaps” in the Ly α forest. Using spectra of 55 QSOs at z em > 5.5, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Ly α forest where the transmission averaged over 1 comoving h −1 Mpc bins falls below 5%. Nine ultralong ( L > 80 h −1 Mpc) dark gaps are identified at z < 6. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than 30 h −1 Mpc, F 30 , as a function of redshift. We measure F 30 ≃ 0.9, 0.6, and 0.15 at z = 6.0, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to z ≃5.3. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at z ≲6 are also potentially consistent with the data. Overall, our results suggest that signatures of reionization in the form of islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least z ≃ 5.3. 
    more » « less
  2. Abstract

    The mean free path of ionizing photons,λmfp, is a critical parameter for modeling the intergalactic medium (IGM) both during and after reionization. We present direct measurements ofλmfpfrom QSO spectra over the redshift range 5 <z< 6, including the first measurements atz≃ 5.3 and 5.6. Our sample includes data from the XQR-30 VLT large program, as well as new Keck/ESI observations of QSOs nearz∼ 5.5, for which we also acquire new [Cii] 158μm redshifts with ALMA. By measuring the Lyman continuum transmission profile in stacked QSO spectra, we findλmfp=9.331.80+2.06,5.401.40+1.47,3.311.34+2.74, and0.810.48+0.73pMpc atz= 5.08, 5.31, 5.65, and 5.93, respectively. Our results demonstrate thatλmfpincreases steadily and rapidly with time over 5 <z< 6. Notably, we find thatλmfpdeviates significantly from predictions based on a fully ionized and relaxed IGM as late asz= 5.3. By comparing our results to model predictions and indirectλmfpconstraints based on IGM Lyαopacity, we find that the evolution ofλmfpis consistent with scenarios wherein the IGM is still undergoing reionization and/or retains large fluctuations in the ionizing UV background well below redshift 6.

     
    more » « less
  3. ABSTRACT

    Revealing the cosmic hydrogen reionization history is one of the main goals of the modern cosmology. z > 5 quasars (QSOs) have been used as back-lights to investigate the evolution of the intervening intergalactic medium (IGM) during the cosmic reionization since their first discovery. However, due to the small population of luminous QSOs (∼130 QSOs known to date), a tight constraint on the reionization history has not yet been placed. In this work, we aim to tighten the constraint using the 93 QSOs (5.5 < z < 7.1) recently discovered in the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQS) project. This is the largest QSO sample used to constrain the epoch of reionization. We measure the mean IGM Ly α transmission and the QSO near-zone size using the UV spectra of these QSOs. The mean IGM Ly α transmission rises above zero at z ≲ 6, indicating the end of the reionization. The near-zone sizes of the SHELLQs QSOs are consistent with sizes spanned by QSOs of lifetime tq ∼ 1–100 Myr in simulations. Due to the scatter created by the low signal-to-noise spectra and large Ly α redshift uncertainty, we cannot conclude whether the redshift evolution of the near-zone size is affected by the reionization effect.

     
    more » « less
  4. Abstract

    We present a new investigation of the intergalactic medium near reionization using dark gaps in the Lyβforest. With its lower optical depth, Lyβoffers a potentially more sensitive probe to any remaining neutral gas compared to the commonly used Lyαline. We identify dark gaps in the Lyβforest using spectra of 42 QSOs atzem> 5.5, including new data from the XQR-30 VLT Large Programme. Approximately 40% of these QSO spectra exhibit dark gaps longer than 10h−1Mpc atz≃ 5.8. By comparing the results to predictions from simulations, we find that the data are broadly consistent both with models where fluctuations in the Lyαforest are caused solely by ionizing ultraviolet background fluctuations and with models that include large neutral hydrogen patches atz< 6 due to a late end to reionization. Of particular interest is a very long (L= 28h−1Mpc) and dark (τeff≳ 6) gap persisting down toz≃ 5.5 in the Lyβforest of thez= 5.85 QSO PSO J025−11. This gap may support late reionization models with a volume-weighted average neutral hydrogen fraction of 〈xH I〉 ≳ 5% byz= 5.6. Finally, we infer constraints on 〈xH I〉 over 5.5 ≲z≲ 6.0 based on the observed Lyβdark gap length distribution and a conservative relationship between gap length and neutral fraction derived from simulations. We find 〈xH I〉 ≤ 0.05, 0.17, and 0.29 atz≃ 5.55, 5.75, and 5.95, respectively. These constraints are consistent with models where reionization ends significantly later thanz= 6.

     
    more » « less
  5. Abstract

    Using the novel semi-numerical code for reionization AMBER, we model the patchy kinetic Sunyaev–Zel’dovich (kSZ) effect by directly specifying the reionization history with the redshift midpointzmid, duration Δz, and asymmetryAz. We further control the ionizing sources and radiation through the minimum halo massMhand the radiation mean free pathλmfp. AMBER reproduces the free-electron number density and the patchy kSZ power spectrum of radiation–hydrodynamic simulations at the target resolution (1 Mpch−1) with matched reionization parameters. With a suite of (2 Gpc/h)3simulations using AMBER, we first constrain the redshift midpoint 6.0 <zmid< 8.9 using the Planck 2018 Thomson optical depth result (95% CL). Then, assumingzmid= 8, we find that the amplitude ofD=3000pkSZscales linearly with the duration of reionization Δzand is consistent with the 1σupper limit from South Pole Telescope (SPT) results up to Δz< 5.1 (Δzencloses 5%–95% ionization). Moreover, a shorterλmfpcan lead to a ∼10% lowerD=3000pkSZand a flatter slope in theD=3000pkSZΔzscaling relation, thereby affecting the constraints on Δzat= 3000. Allowingzmidandλmfpto vary simultaneously, we get spectra consistent with the SPT result (95% CL) up to Δz= 12.8 (butAz> 8 is needed to ensure the end of reionization beforez= 5.5). We show that constraints on the asymmetry require ∼0.1μk2measurement accuracy at multipoles other than= 3000. Finally, we find that the amplitude and shape of the kSZ spectrum are only weakly sensitive toMhunder a fixed reionization history and radiation mean free path.

     
    more » « less