skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2045600

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recently, it was pointed out that invoking a large value of the cosmic microwave background (CMB) optical depth,τCMB = 0.09, could help resolve tensions between Dark Energy Survey Instrument DR2 baryon acoustic oscillation data and the CMB. This is larger than the value ofτCMB = 0.058 measured from the Planck low-ℓpolarization data. Traditionally,τCMBis thought of as a constraint on reionization’s midpoint. However, recent observations and modeling of the Lyαforest of high-zquasars at 5 < z < 6 have tightly constrained the timing of the last 10%–20% of reionization, adding nuance to this interpretation. Here, we point out that fixing reionization’s endpoint, in accordance with the latest Lyαforest constraints, rendersτCMBa sensitive probe of the duration of reionization, as well as its midpoint. We compare low and high values ofτCMBto upper limits on the patchy kinematic Sunyaev–Zel'dovich (pkSZ) effect, another CMB observable that constrains reionization’s duration, and find that a value ofτCMB = 0.09 is in ≈2σtension with existing limits on the pkSZ from the South Pole Telescope (SPT). The strength of this tension is sensitive to the choices involved in modeling the other CMB foregrounds in the SPT measurement, and in the modeling of the pkSZ signal itself. 
    more » « less
    Free, publicly-accessible full text available July 3, 2026
  2. Abstract Recent JWST observations atz > 6 may imply galactic ionizing photon production above prior expectations. Under observationally motivated assumptions about escape fractions, these suggest az ~ 8–9 end to reionization, in tension with thez < 6 end required by the Lyαforest. In this work, we use radiative transfer simulations to understand what different observations tell us about when reionization ended and when it started. We consider a model that ends too early (zend ≈ 8) alongside two more realistic scenarios withzend ≈ 5: one starting late (z ~ 9) and another early (z ~ 13). We find that the latter requires up to an order-of-magnitude evolution in galaxy ionizing properties at 6 < z < 12, perhaps in tension with measurements ofξionby JWST, which indicate little evolution. We study how these models compare to recent measurements of the Lyαforest opacity, mean free path, intergalactic medium thermal history, visibility ofz > 8 Lyαemitters, and the patchy kSZ signal from the cosmic microwave background (CMB). We find that neither of the late-ending scenarios is strongly disfavored by any single data set. However, a majority of observables, spanning several distinct types of observations, prefer a late start. Not all probes agree with this conclusion, hinting at a possible lack of concordance arising from deficiencies in observations and/or theoretical modeling. Observations by multiple experiments (including JWST, Roman, and CMB-S4) in the coming years will establish a concordance picture of reionization's beginning or uncover such deficiencies. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  3. Abstract Long troughs observed in thez> 5.5 Lyαand Lyβforests are thought to be caused by the last remaining neutral patches during the end phases of reionization — termed neutral islands. If this is true, then the longest troughs mark locations where we are most likely to observe the reionizing intergalactic medium (IGM). A key feature of the neutral islands is that they are bounded by ionization fronts (I-fronts) which emit Lyman series lines. In this paper, we explore the possibility of directly imaging the outline of neutral islands with a narrowband survey targeting Lyα. In a companion paper, we quantified the intensity of I-front Lyαemissions during reionization and its dependence on the spectrum of incident ionizing radiation and I-front speed. Here we apply those results to reionization simulations to model the emissions from neutral islands. We find that neutral islands would appear as diffuse structures that are tens of comoving Mpc across, with surface brightnesses in the range ≈ 1 - 5× 10-21erg s-1cm-2arcsec-2. The islands are brighter if the spectrum of ionizing radiation driving the I-fronts is harder, and/or if the I-fronts are moving faster. We develop mock observations for current and futuristic observatories and find that, while extremely challenging, detecting neutral islands is potentially within reach of an ambitious observing program with wide-field narrowband imaging. Our results demonstrate the potentially high impact of low-surface brightness observations for studying reionization. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Abstract Observations of quasar absorption spectra provide strong evidence that reionization extended belowz= 6. The relationship between Lyαforest opacity and local galaxy density (the opacity-density relation) is a key observational test of this scenario. Using narrow-band surveys ofz≈ 5.7 Lyαemitters (LAEs) centered on quasar sight lines, ref. [1] showed that two of the most transmissive Lyαforest segments at this redshift intersect under-densities in the galaxy distribution. This result is in tension with models of a strongly fluctuating ionizing background, including some models of late reionization, which predict that the vast majority of these segments should intersect over-densities where the ionizing intensity is strongest. In this paper, we use radiative transfer simulations to explore in more detail the opacity-density relation predicted by late reionization models. We find that fields like the one toward quasar PSO J359-06 — the more under-dense of the two transmissive sight lines in ref. [1] — are typically associated with recently reionized gas inside of cosmic voids where the hotter temperatures and rarefied densities enhance Lyαtransmission. The opacity-density relation's transmissive end is sensitive to the amount of neutral gas in the voids, as well as its morphology, set by the clustering of reionization sources. These effects are, however, largely degenerate with each other. We demonstrate that models with very different source clustering can nonetheless yield nearly identical opacity-density relations when their reionization histories are calibrated to match Lyα forest mean flux measurements atz< 6. In models with fixed source clustering, a lower neutral fraction increases the likelihood of intersecting hot, recently reionized gas in the voids, increasing the likelihood of observing fields like PSO J359-06. For instance, the probability of observing this field is 15% in a model with neutral fractionxHI= 5% atz= 5.7, three times more likely than in a model withxHI= 15%. The opacity-density relation may thus provide a complementary probe of reionization's tail end. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. Abstract During reionization, intergalactic ionization fronts (I-fronts) are sources of Lyαline radiation produced by collisional excitation of hydrogen atoms within the fronts. In principle, detecting this emission could provide direct evidence for a reionizing intergalactic medium (IGM). In this paper, we use a suite of high-resolution one-dimensional radiative transfer simulations run on cosmological density fields to quantify the parameter space of I-front Lyαemission. We find that the Lyαproduction efficiency — the ratio of emitted Lyαflux to incident ionizing flux driving the front — depends mainly on the I-front speed and the spectral index of the ionizing radiation. IGM density fluctuations on scales smaller than the typical I-front width produce scatter in the efficiency, but they do not significantly boost its mean value. The Lyαflux emitted by an I-front is largest if 3 conditions are met simultaneously: (1) the incident ionizing flux is large; (2) the incident spectrum is hard, consisting of more energetic photons; (3) the I-front is traveling through a cosmological over-density, which causes it to propagate more slowly. We present a convenient parameterization of the efficiency in terms of I-front speed and incident spectral index. We make these results publicly available as an interpolation table and we provide a simple fitting function for a representative ionizing background spectrum. Our results can be applied as a sub-grid model for I-front Lyα emissions in reionization simulations with spatial and/or temporal resolutions too coarse to resolve I-front structure. In a companion paper, we use our results to explore the possibility of directly imaging Lyαemission around neutral islands during the last phases of reionization. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. Abstract The wealth of high-quality observational data from the epoch of reionization that will become available in the next decade motivates further development of modeling techniques for their interpretation. Among the key challenges in modeling reionization are (1) its multi-scale nature, (2) the computational demands of solving the radiative transfer (RT) equation, and (3) the large size of reionization's parameter space. In this paper, we present and validate a new RT code designed to confront these challenges.FlexRT(Flexible Radiative Transfer) combines adaptive ray tracing with a highly flexible treatment of the intergalactic ionizing opacity. This gives the user control over how the intergalactic medium (IGM) is modeled, and provides a way to reduce the computational cost of aFlexRTsimulation by orders of magnitude while still accounting for small-scale IGM physics. Alternatively, the user may increase the angular and spatial resolution of the algorithm to run a more traditional reionization simulation.FlexRThas already been used in several contexts, including simulations of the Lyman-αforest of high-zquasars, the redshifted 21cm signal from reionization, as well as in higher resolution reionization simulations in smaller volumes. In this work, we motivate and describe the code, and validate it against a set of standard test problems from the Cosmological Radiative Transfer Comparison Project. We find thatFlexRTis in broad agreement with a number of existing RT codes in all of these tests. Lastly, we compareFlexRTto an existing adaptive ray tracing code to validateFlexRTin a cosmological reionization simulation. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  7. ABSTRACT The thermal history and structure of the intergalactic medium (IGM) at $$z \ge 4$$ is an important boundary condition for reionization, and a key input for studies using the Ly $$\alpha$$ forest to constrain the masses of alternative dark matter candidates. Most such inferences rely on simulations that lack the spatial resolution to fully resolve the hydrodynamic response of IGM filaments and minihaloes to H i reionization heating. In this letter, we use high-resolution hydrodynamic + radiative transfer simulations to study how these affect the IGM thermal structure. We find that the adiabatic heating and cooling driven by the expansion of initially cold gas filaments and minihaloes sources significant small-scale temperature fluctuations. These likely persist in much of the IGM until $$z \le 4$$. Capturing this effect requires resolving the clumping scale of cold, pre-ionized gas, demanding spatial resolutions of $${\le} 2$$ $$h^{-1}$$kpc. Pre-heating of the IGM by X-rays can slightly reduce the effect. Our preliminary estimate of the effect on the Ly $$\alpha$$ forest finds that, at $$\log (k /[{\rm km^{-1} s}]) = -1.0$$, the Ly $$\alpha$$ forest flux power (at fixed mean flux) can increase $${\approx} 10~{{\ \rm per\ cent}}$$ going from 8 and 2 $$h^{-1}$$kpc resolution at $$z = 4{\!-\!}5$$ for gas ionized at $$z \ \lt\ 7$$. These findings motivate more careful analyses of how the effects studied here affect the Ly $$\alpha$$ forest. 
    more » « less
  8. ABSTRACT Quasar absorption spectra measurements suggest that reionization proceeded rapidly, ended late at z ∼ 5.5, and was followed by a flat ionizing background evolution. Simulations that reproduce this behaviour often rely on a fine-tuned galaxy ionizing emissivity, which peaks at z ∼ 6–7 and drops a factor of 1.5–2.5 by z ∼ 5. This is puzzling since the abundance of galaxies is observed to grow monotonically during this period. Explanations for this include effects such as dust obscuration of ionizing photon escape and feedback from photoheating of the IGM. We explore the possibility that this drop in emissivity is instead an artefact of one or more modelling deficiencies in reionization simulations. These include possibly incorrect assumptions about the ionizing spectrum and/or inaccurate modelling of IGM clumping. Our results suggest that the need for a drop could be alleviated if simulations are underestimating the IGM opacity from massive, star-forming haloes. Other potential modelling issues either have a small effect or require a steeper drop when remedied. We construct an illustrative model in which the emissivity is nearly flat at reionization’s end, evolving only ∼0.05 dex at 5 < z < 7. More realistic scenarios, however, require a ∼0.1–0.3 dex drop. We also study the evolution of the Ly α effective optical depth distribution and compare to recent measurements. We find that models that feature a hard ionizing spectrum and/or are driven by faint, low-bias sources most easily reproduce the mean transmission and optical depth distribution of the forest simultaneously. 
    more » « less
  9. ABSTRACT Recent measurements of the ionizing photon mean free path (MFP) based on composite quasar spectra may point to reionization ending at z < 6. These measurements are challenging because they rely on assumptions about the proximity zones of the quasars. For example, some quasars might have been close to neutral patches where reionization was still ongoing (‘neutral islands’), and it is unclear how they would affect the measurements. We address this question with mock MFP measurements from radiative transfer simulations. We find that, even in the presence of neutral islands, our mock MFP measurements agree to within $$30~{{\ \rm per\ cent}}$$ with the true spatially averaged MFP in our simulations, which includes opacity from both the ionized medium and the islands. The inferred MFP is sensitive at the $$\lt ~50~{{\ \rm per\ cent}}$$ level to assumptions about quasar environments and lifetimes for realistic models. We demonstrate that future analyses with improved data may require explicitly modelling the effects of neutral islands on the composite spectra, and we outline a method for doing this. Lastly, we quantify the effects of neutral islands on Lyman-series transmission, which has been modelled with optically thin simulations in previous MFP analyses. Neutral islands can suppress transmission at λrest < 912 Å significantly, up to a factor of 2 for zqso = 6 in a plausible reionization scenario, owing to absorption by many closely spaced lines as quasar light redshifts into resonance. However, the suppression is almost entirely degenerate with the spectrum normalization and thus does not significantly bias the inferred MFP. 
    more » « less
  10. ABSTRACT Recent quasar absorption line observations suggest that reionization may end as late as $$z \approx 5.3$$. As a means to search for large neutral hydrogen islands at $$z\ \lt\ 6$$, we revisit long dark gaps in the Ly $$\beta$$ forest in Very Large Telescope/X-Shooter and Keck/Echellette Spectrograph and Imager quasar spectra. We stack the Ly $$\alpha$$ forest corresponding to both edges of these Ly $$\beta$$ dark gaps and identify a damping wing-like extended absorption profile. The average redshift of the stacked forest is $z=5.8$. By comparing these observations with reionization simulations, we infer that such a damping wing-like feature can be naturally explained if these gaps are at least partially created by neutral islands. Conversely, simulated dark gaps lacking neutral hydrogen struggle to replicate the observed damping wing features. Furthermore, this damping wing-like profile implies that the volume-averaged neutral hydrogen fraction must be $$\langle x_{\rm H\,{\small {I}}} \rangle \ge 6.1 \pm 3.9~{{\ \rm per\ cent}}$$ at $z = 5.8$. Our results offer robust evidence that reionization extends below $z=6$. 
    more » « less