skip to main content


Title: Hydrodynamic Response of the Intergalactic Medium to Reionization. II. Physical Characteristics and Dynamics of Ionizing Photon Sinks
Abstract Becker et al. measured the mean free path of Lyman-limit photons in the intergalactic medium (IGM) at z = 6. The short value suggests that absorptions may have played a prominent role in reionization. Here we study physical properties of ionizing photon sinks in the wake of ionization fronts (I-fronts) using radiative hydrodynamic simulations. We quantify the contributions of gaseous structures to the Lyman-limit opacity by tracking the column-density distributions in our simulations. Within Δ t = 10 Myr of I-front passage, we find that self-shielding systems ( N H I > 10 17.2 cm −2 ) are comprised of two distinct populations: (1) overdensity Δ ∼ 50 structures in photoionization equilibrium with the ionizing background, and (2) Δ ≳ 100 density peaks with fully neutral cores. The self-shielding systems contribute more than half of the opacity at these times, but the IGM evolves considerably in Δ t ∼ 100 Myr as structures are flattened by pressure smoothing and photoevaporation. By Δ t = 300 Myr, they contribute ≲10% to the opacity in an average 1 Mpc 3 patch of the universe. The percentage can be a factor of a few larger in overdense patches, where more self-shielding systems survive. We quantify the characteristic masses and sizes of self-shielding structures. Shortly after I-front passage, we find M = 10 4 –10 8 M ⊙ and effective diameters d eff = 1–20 ckpc h −1 . These scales increase as the gas relaxes. The picture herein presented may be different in dark matter models with suppressed small-scale power.  more » « less
Award ID(s):
2045600
NSF-PAR ID:
10331613
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
923
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
161
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the KODIAQ-Z survey aimed to characterize the cool, photoionized gas at 2.2 ≲z≲ 3.6 in 202 Hi-selected absorbers with 14.6 ≤logNHI< 20 that probe the interface between galaxies and the intergalactic medium (IGM). We find that gas with14.6logNHI<20at 2.2 ≲z≲ 3.6 can be metal-rich (−1.6 ≲ [X/H] ≲ − 0.2) as seen in damped Lyαabsorbers (DLAs); it can also be very metal-poor ([X/H] < − 2.4) or even pristine ([X/H] < − 3.8), which is not observed in DLAs but is common in the IGM. For16<logNHI<20absorbers, the frequency of pristine absorbers is about 1%–10%, while for14.6logNHI16absorbers it is 10%–20%, similar to the diffuse IGM. Supersolar gas is extremely rare (<1%) at these redshifts. The factor of several thousand spread from the lowest to highest metallicities and large metallicity variations (a factor of a few to >100) between absorbers separated by less than Δv< 500 km s−1imply that the metals are poorly mixed in14.6logNHI<20gas. We show that these photoionized absorbers contribute to about 14% of the cosmic baryons and 45% of the cosmic metals at 2.2 ≲z≲ 3.6. We find that the mean metallicity increases withNHi, consistent with what is found inz< 1 gas. The metallicity of gas in this column density regime has increased by a factor ∼8 from 2.2 ≲z≲ 3.6 toz< 1, but the contribution of the14.6logNHI<19absorbers to the total metal budget of the universe atz< 1 is a quarter of that at 2.2 ≲z≲ 3.6. We show that FOGGIE cosmological zoom-in simulations have a similar evolution of [X/H] withNHi, which is not observed in lower-resolution simulations. In these simulations, very metal-poor absorbers with [X/H] < − 2.4 atz∼ 2–3 are tracers of inflows, while higher-metallicity absorbers are a mixture of inflows and outflows.

     
    more » « less
  2. ABSTRACT A recent measurement of the Lyman-limit mean free path at z = 6 suggests it may have been very short, motivating a better understanding of the role that ionizing photon sinks played in reionization. Accurately modelling the sinks in reionization simulations is challenging because of the large dynamic range required if ∼104−108M⊙ gas structures contributed significant opacity. Thus, there is no consensus on how important the sinks were in shaping reionization’s morphology. We address this question with a recently developed radiative transfer code that includes a dynamical sub-grid model for the sinks based on radiative hydrodynamics simulations. Compared to assuming a fully pressure-smoothed intergalactic medium, our dynamical treatment reduces ionized bubble sizes by $10-20~{{\ \rm per\ cent}}$ under typical assumptions about reionization’s sources. Near reionization’s midpoint, the 21 cm power at k ∼ 0.1 hMpc−1 is similarly reduced. These effects are more modest than the $30-60~{{\ \rm per\ cent}}$ suppression resulting from the higher recombination rate if pressure smoothing is neglected entirely. Whether the sinks played a significant role in reionization’s morphology depends on the nature of its sources. For example, if reionization was driven by bright (MUV < −17) galaxies, the sinks reduce the large-scale 21 cm power by at most 20  per cent, even if pressure smoothing is neglected. Conveniently, when bright sources contribute significantly, the morphology in our dynamical treatment can be reproduced accurately with a uniform sub-grid clumping factor that yields the same ionizing photon budget. By contrast, if MUV ∼ −13 galaxies drove reionization, the uniform clumping model can err by up to 40  per cent. 
    more » « less
  3. null (Ed.)
    ABSTRACT We study the escape fraction of ionizing photons (fesc) in two cosmological zoom-in simulations of galaxies in the reionization era with halo mass Mhalo ∼ 1010 and $10^{11}\, \mathrm{ M}_{\odot }$ (stellar mass M* ∼ 107 and $10^9\, \mathrm{ M}_{\odot }$) at z = 5 from the Feedback in Realistic Environments project. These simulations explicitly resolve the formation of proto-globular clusters (GCs) self-consistently, where 17–39 per cent of stars form in bound clusters during starbursts. Using post-processing Monte Carlo radiative transfer calculations of ionizing radiation, we compute fesc from cluster stars and non-cluster stars formed during a starburst over ∼100 Myr in each galaxy. We find that the averaged fesc over the lifetime of a star particle follows a similar distribution for cluster stars and non-cluster stars. Clusters tend to have low fesc in the first few Myr, presumably because they form preferentially in more extreme environments with high optical depths; the fesc increases later as feedback starts to destroy the natal cloud. On the other hand, some non-cluster stars formed between cluster complexes or in the compressed shells at the front of a superbubble can also have high fesc. We find that cluster stars on average have comparable fesc to non-cluster stars. This result is robust across several star formation models in our simulations. Our results suggest that the fraction of ionizing photons from proto-GCs to cosmic reionization is comparable to the cluster formation efficiencies in high-redshift galaxies and thus proto-GCs likely contribute an appreciable fraction of photons but are not the dominant sources for reionization. 
    more » « less
  4. null (Ed.)
    ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $\langle T \rangle =(2\pm 1) \times 10^4\,$K and modest non-thermal broadening of $\langle b_\mathrm{nt} \rangle =5\pm 3\,$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicity constraints for the low density, highly ionized phase remains challenging due to the uncertain $N\mathrm{(H\, {\small I})}$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium. 
    more » « less
  5. Abstract

    The bimodal absorption system imaging campaign (BASIC) aims to characterize the galaxy environments of a sample of 36 Hi-selected partial Lyman limit systems (pLLSs) and Lyman limit systems (LLSs) in 23 QSO fields atz≲ 1. These pLLSs/LLSs provide a unique sample of absorbers with unbiased and well-constrained metallicities, allowing us to explore the origins of metal-rich and low-metallicity circumgalactic medium (CGM) atz< 1. Here we present Keck/KCWI and Very Large Telescope/MUSE observations of 11 of these QSO fields (19 pLLSs) that we combine with Hubble Space Telescope/Advanced Camera for Surveys imaging to identify and characterize the absorber-associated galaxies at 0.16 ≲z≲ 0.84. We find 23 unique absorber-associated galaxies, with an average of one associated galaxy per absorber. For seven absorbers, all with <10% solar metallicities, we find no associated galaxies withlogM9.0withinρ/Rvirand ∣Δv∣/vesc≤ 1.5 with respect to the absorber. We do not find any strong correlations between the metallicities or Hicolumn densities of the gas and most of the galaxy properties, except for the stellar mass of the galaxies: the low-metallicity ([X/H] ≤ −1.4) systems have a probability of0.390.15+0.16for having a host galaxy withlogM9.0withinρ/Rvir≤ 1.5, while the higher metallicity absorbers have a probability of0.780.13+0.10. This implies metal-enriched pLLSs/LLSs atz< 1 are typically associated with the CGM of galaxies withlogM>9.0, whereas low-metallicity pLLSs/LLSs are found in more diverse locations, with one population arising in the CGM of galaxies and another more broadly distributed in overdense regions of the universe. Using absorbers not associated with galaxies, we estimate the unweighted geometric mean metallicity of the intergalactic medium to be [X/H] ≲ −2.1 atz< 1, which is lower than previously estimated.

     
    more » « less