Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island, Bahamas. We confirmed the loss of a putative Sry transcription factor binding site upstream of galr2 in scale-eating pupfish and found significant spatial differences in galr2 expression among pupfish species in Meckel's cartilage usingin situhybridization chain reaction (HCR). We then experimentally demonstrated a novel role for Galr2 in craniofacial development by exposing embryos to Garl2-inhibiting drugs. Galr2-inhibition reduced Meckel's cartilage length and increased chondrocyte density in both trophic specialists but not in the generalist genetic background. We propose a mechanism for jaw elongation in scale-eaters based on the reduced expression of galr2 due to the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-eater Meckel's cartilage may result in their enlarged jaw lengths as adults by limiting opportunities for a circulating Galr2 agonist to bind to these receptors during development. Our findings illustrate the growing utility of linking candidate adaptive SNPs in non-model systems with highly divergent phenotypes to novel vertebrate gene functions.
more »
« less
We get by with a little help from our friends: shared adaptive variation provides a bridge to novel ecological specialists during adaptive radiation
Adaptive radiations involve astounding bursts of phenotypic, ecological and species diversity. However, the microevolutionary processes that underlie the origins of these bursts are still poorly understood. We report the discovery of an intermediate C. sp. ‘wide-mouth’ scale-eating ecomorph in a sympatric radiation of Cyprinodon pupfishes, illuminating the transition from a widespread algae-eating generalist to a novel microendemic scale-eating specialist. We first show that this ecomorph occurs in sympatry with generalist C. variegatus and scale-eating specialist C. desquamator on San Salvador Island, Bahamas, but is genetically differentiated, morphologically distinct and often consumes scales. We then compared the timing of selective sweeps on shared and unique adaptive variants in trophic specialists to characterize their adaptive walk. Shared adaptive regions swept first in both the specialist desquamator and the intermediate ‘wide-mouth’ ecomorph, followed by unique sweeps of introgressed variation in ‘wide-mouth’ and de novo variation in desquamator . The two scale-eating populations additionally shared 9% of their hard selective sweeps with the molluscivore C. brontotheroides , despite no single common ancestor among specialists. Our work provides a new microevolutionary framework for investigating how major ecological transitions occur and illustrates how both shared and unique genetic variation can provide a bridge for multiple species to access novel ecological niches.
more »
« less
- Award ID(s):
- 1938571
- PAR ID:
- 10331627
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 289
- Issue:
- 1975
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Meyer, Axel (Ed.)Adaptive radiations offer an excellent opportunity to understand the eco-evolutionary dynamics of gut microbiota and host niche specialization. In a laboratory common garden, we compared the gut microbiota of two novel derived trophic specialist pupfishes, a scale-eater and a molluscivore, to closely related and distant outgroup generalist populations, spanning both rapid trophic evolution within 10 kya and stable generalist diets persisting over 11 Mya. We predicted an adaptive and highly divergent microbiome composition in the trophic specialists reflecting their rapid rates of craniofacial and behavioral diversification. We sequenced 16S rRNA amplicons of gut microbiomes from lab-reared adult pupfishes raised under identical conditions and fed the same high protein diet. In contrast to our predictions, gut microbiota largely reflected phylogenetic distance among species, rather than generalist or specialist life history, in support of phylosymbiosis. However, we did find significant enrichment of Burkholderiaceae bacteria in replicated lab-reared scale-eater populations. These bacteria sometimes digest collagen, the major component of fish scales, supporting an adaptive shift. We also found some enrichment of Rhodobacteraceae and Planctomycetia in lab-reared molluscivore populations, but these bacteria target cellulose. Overall phylogenetic conservation of microbiome composition contrasts with predictions of adaptive radiation theory and observations of rapid diversification in all other trophic traits in these hosts, including craniofacial morphology, foraging behavior, aggression, and gene expression, suggesting that the functional role of these minor shifts in microbiota will be important for understanding the role of the microbiome in trophic diversification.more » « less
-
To investigate the origins and stages of vertebrate adaptive radiation, we reconstructed the spatial and temporal histories of adaptive alleles underlying major phenotypic axes of diversification from the genomes of 202 Caribbean pupfishes. On a single Bahamian island, ancient standing variation from disjunct geographic sources was reassembled into new combinations under strong directional selection for adaptation to the novel trophic niches of scale-eating and molluscivory. We found evidence for two longstanding hypotheses of adaptive radiation: hybrid swarm origins and temporal stages of adaptation. Using a combination of population genomics, transcriptomics, and genome-wide association mapping, we demonstrate that this microendemic adaptive radiation of novel trophic specialists on San Salvador Island, Bahamas experienced twice as much adaptive introgression as generalist populations on neighboring islands and that adaptive divergence occurred in stages. First, standing regulatory variation in genes associated with feeding behavior (prlh,cfap20, andrmi1) were swept to fixation by selection, then standing regulatory variation in genes associated with craniofacial and muscular development (itga5,ext1,cyp26b1, andgalr2) and finally the only de novo nonsynonymous substitution in an osteogenic transcription factor and oncogene (twist1) swept to fixation most recently. Our results demonstrate how ancient alleles maintained in distinct environmental refugia can be assembled into new adaptive combinations and provide a framework for reconstructing the spatiotemporal landscape of adaptation and speciation.more » « less
-
Wittkopp, Patricia (Ed.)Abstract Investigating closely related species that rapidly evolved divergent feeding morphology is a powerful approach to identify genetic variation underlying variation in complex traits. This can also lead to the discovery of novel candidate genes influencing natural and clinical variation in human craniofacial phenotypes. We combined whole-genome resequencing of 258 individuals with 50 transcriptomes to identify candidate cis-acting genetic variation underlying rapidly evolving craniofacial phenotypes within an adaptive radiation of Cyprinodon pupfishes. This radiation consists of a dietary generalist species and two derived trophic niche specialists—a molluscivore and a scale-eating species. Despite extensive morphological divergence, these species only diverged 10 kya and produce fertile hybrids in the laboratory. Out of 9.3 million genome-wide SNPs and 80,012 structural variants, we found very few alleles fixed between species—only 157 SNPs and 87 deletions. Comparing gene expression across 38 purebred F1 offspring sampled at three early developmental stages, we identified 17 fixed variants within 10 kb of 12 genes that were highly differentially expressed between species. By measuring allele-specific expression in F1 hybrids from multiple crosses, we found that the majority of expression divergence between species was explained by trans-regulatory mechanisms. We also found strong evidence for two cis-regulatory alleles affecting expression divergence of two genes with putative effects on skeletal development (dync2li1 and pycr3). These results suggest that SNPs and structural variants contribute to the evolution of novel traits and highlight the utility of the San Salvador Island pupfish system as an evolutionary model for craniofacial development.more » « less
-
Abstract Growing evidence suggests that organisms with narrow niche requirements are particularly disadvantaged in small habitat patches, typical of fragmented landscapes. However, the mechanisms behind this relationship remain unclear. Dietary specialists may be particularly constrained by the availability of their food resources as habitat area shrinks. For herbivorous insects, host plants may be filtered out of small habitat fragments by neutral sampling processes and deterministic plant community shifts due to altered microclimates, edge effects and browsing by ungulates.We examined the relationship between forest fragment area and the abundance of dietary‐specialist and dietary‐generalist larval Lepidoptera (caterpillars) and their host plants in the northeastern USA. We surveyed caterpillars and their host plants over 3 years in equal‐sized plots within 32 forest fragments varying in area between 3 and 1014 ha. We tested whether the abundances and species richness of dietary specialists increased more than those of dietary generalists with increasing fragment area and, if so, whether the difference could be explained by reduced host plant availability or increased browsing by white‐tailed deer (Odocoileus virginianus).The overall abundance of dietary specialists was positively related to fragment area; the relationship was substantially weaker for dietary generalists. There was notable variation among species within diet breadth groups, however. There was no effect of fragment area on the diversity of dietary‐specialist or dietary‐generalist caterpillars. Deer activity was not related to the abundances of either dietary‐generalist or dietary‐specialist caterpillars.Plant community composition was strongly associated with fragment area. Larger fragments were more likely to include host plants for both dietary‐specialist and dietary‐generalist caterpillars. Deer activity was correlated with decreased host plant availability for both groups, with a slightly stronger impact on host plants of dietary specialists. Although dietary specialists were more likely to lack host plants in fragments, the relationship between fragment area and host availability did not depend on caterpillar diet breadth.This study provides further evidence that decreasing patch area disproportionately impacts specialist consumers. Because this relationship was derived from equal‐sized plots, it is robust to some criticisms levelled at fragmentation research. The mechanisms for specialist consumer declines, however, remain elusive.more » « less
An official website of the United States government

