skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Organic Phosphorus Scavenging Supports Efficient Growth of Diazotrophic Cyanobacteria Under Phosphate Depletion
Considering the reported significant diazotrophic activities in open-ocean regions where primary production is strongly limited by phosphate, we explored the ability of diazotrophs to use other sources of phosphorus to alleviate the phosphate depletion. We tested the actual efficiency of the open-ocean, N 2 -fixer Crocosphaera watsonii to grow on organic phosphorus as the sole P source, and observed how the P source affects the cellular C, N, and P composition. We obtained equivalent growth efficiencies on AMP and DL-α-glycerophosphate as compared with identical cultures grown on phosphate, and survival of the population on phytic acid. Our results show that Crocosphaera cannot use all phosphomonoesters with the same efficiency, but it can grow without phosphate, provided that usable DOP and sufficient light energy are available. Also, results point out that organic phosphorus uptake is not proportional to alkaline phosphatase activity, demonstrating that the latter is not a suitable proxy to estimate DOP-based growth yields of organisms, whether in culture experiments or in the natural environment. The growth parameters obtained, as a function of the P source, will be critical to improve and calibrate mathematical models of diazotrophic growth and the distribution of nitrogen fixation in the global ocean.  more » « less
Award ID(s):
1434916 1737083 1948042 2001212
PAR ID:
10331653
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
13
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The oceanic dissolved organic phosphorus (DOP) pool is mainly composed of P-esters and, to a lesser extent, equally abundant phosphonate and P-anhydride molecules. In phosphate-limited ocean regions, diazotrophs are thought to rely on DOP compounds as an alternative source of phosphorus (P). While both P-esters and phosphonates effectively promote dinitrogen (N 2 ) fixation, the role of P-anhydrides for diazotrophs is unknown. Here we explore the effect of P-anhydrides on N 2 fixation at two stations with contrasting biogeochemical conditions: one located in the Tonga trench volcanic arc region (“volcano,” with low phosphate and high iron concentrations), and the other in the South Pacific Gyre (“gyre,” with moderate phosphate and low iron). We incubated surface seawater with AMP (P-ester), ATP (P-ester and P-anhydride), or 3polyP (P-anhydride) and determined cell-specific N 2 fixation rates, nifH gene abundance, and transcription in Crocosphaera and Trichodesmium . Trichodesmium did not respond to any DOP compounds added, suggesting that they were not P-limited at the volcano station and were outcompeted by the low iron conditions at the gyre station. Conversely, Crocosphaera were numerous at both stations and their specific N 2 fixation rates were stimulated by AMP at the volcano station and slightly by 3polyP at both stations. Heterotrophic bacteria responded to ATP and 3polyP additions similarly at both stations, despite the contrasting phosphate and iron availability. The use of 3polyP by Crocosphaera and heterotrophic bacteria at both low and moderate phosphate concentrations suggests that this compound, in addition to being a source of P, can be used to acquire energy for which both groups compete. P-anhydrides may thus leverage energy restrictions to diazotrophs in the future stratified and nutrient-impoverished ocean. 
    more » « less
  2. Abstract Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus–carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5′-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5′-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus–carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5′-triphosphate, and lastly adenosine 5′-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains’ exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5′-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems. 
    more » « less
  3. Abstract In oligotrophic ocean regions, dissolved organic phosphorus (DOP) plays a prominent role as a source of phosphorus (P) to microorganisms. An important bioavailable component of DOP is phosphonates, organophosphorus compounds with a carbon‐phosphorus (C‐P) bond, which are ubiquitous in high molecular weight dissolved organic matter (HMWDOM). In addition to being a source of P, the degradation of phosphonates by the bacterial C‐P lyase enzymatic pathway causes the release of trace hydrocarbon gases relevant to climate and atmospheric chemistry. In this study, we investigated the roles of phosphate and phosphonate cycling in the production of methane (CH4) and ethylene (C2H4) in the western North Atlantic Ocean, a region that features a transition in phosphate concentrations from coastal to open ocean waters. We observed an inverse relationship between phosphate and the saturation state of CH4and C2H4in the water column, and between phosphate and the relative abundance of the C‐P lyase marker genephnJ. In phosphate‐depleted waters, methylphosphonate and 2‐hydroxyethylphosphonate, the C‐P lyase substrates that yield CH4and C2H4, respectively, were readily degraded in proportions consistent with their abundance and bioavailability in HMWDOM and with the concentrations of CH4and C2H4in the water column. We conclude that phosphonate degradation through the C‐P lyase pathway is an important source and a common production pathway of CH4and C2H4in the phosphate‐depleted surface waters of the western North Atlantic Ocean and that phosphate concentration can be an important control on the saturation state of these gases in the upper ocean. 
    more » « less
  4. null (Ed.)
    Dissolved organic phosphorus (DOP) has a dual role in the surface ocean as both a product of primary production and as an organic nutrient fueling primary production and nitrogen Fixation, especially in oligotrophic gyres. Though poorly constrained, understanding the geographic distribution and environmental controls of surface ocean DOP concentration is critical to estimating distributions and rates of primary production and nitrogen Fixation in the global ocean. Here we pair DOP concentration measurements with a metric of phosphate (PO43-) stress (P*), satellite-based chlorophyll a concentrations, and iron stress estimates to explore their relationship with upper 50 m DOP stocks. Our results show that PO43- and iron stress work together to control surface DOP concentrations at basin scales. SpeciFcally, upper 50 m DOP stocks decrease with increasing phosphate stress, while alleviated iron stress leads to either surface DOP accumulation or loss depending on PO43- availability. Our work suggests an interdependence between DOP concentration, inorganic nutrient ratios, and iron availability, and establishes a predictive framework for DOP distributions in the global surface ocean. 
    more » « less
  5. Re, Angela (Ed.)
    ABSTRACT Dissolved organic phosphorus (DOP) is a potential source of aquatic eutrophication and pollution because it can potentially stimulate growth in some species and inhibit growth in other species of algae, the foundation of the marine ecosystem. Inositol hexaphosphate (also named phytic acid or PA), an abundant organophosphate, is presumably ubiquitous in the marine environment, but how it affects marine primary producers is poorly understood. Here, we investigated the bioavailability of this DOP to the cosmopolitan coccolithophoreEmiliania huxleyi. Our results showed thatE.huxleyicells can take up PA and dissolved inorganic phosphorus (DIP) simultaneously. Absorbed PA can efficiently support algal growth, producing cell yield between DIP and phosphorus (P)-depleted conditions. Accordingly, PA supply as the sole P source highly influences cellular metabolism and nutrient stoichiometry. Particularly, PA-grown cultures exhibited enhanced carbon fixation, increased lipid content, activated energy metabolism, and induced nitrogen assimilation. However, our data suggest that PA may also exert some levels of toxic effects onE. huxleyi. This study provides novel insights into the variable effects of a DOP on marine phytoplankton, which will inform new inquiries about how the complex DOP constituencies in the ocean will shape phytoplankton community structure and function. IMPORTANCEThe dissolved organic phosphorus (DOP) utilization in phytoplankton plays vital roles in cellular P homeostasis, P-nutrient niche, and the dynamics of community structure in marine ecosystems, but its mechanisms, potentially varying with species, are far from clear. In this study, we investigated the utilization of a widespread DOP species, which is commonly produced by plants (land plants and marine macrophytes) and released into coastal areas, in a globally distributed bloom-forming coccolithophore species in various phosphorus environments. Using a combination of physiological and transcriptomic measurements and analyses, our experimental results revealed the complex mechanism and two-sided effects of DOP (major algal growth-supporting and minor toxic effects) in this species, providing a novel perspective on phytoplankton nutrient regulation. 
    more » « less