Polyphosphates and phosphomonoesters are dominant components of marine dissolved organic phosphorus (DOP). Collectively, DOP represents an important nutritional phosphorus (P) source for phytoplankton growth in the ocean, but the contribution of specific DOP sources to microbial community P demand is not fully understood. In a prior study, it was reported that inorganic polyphosphate was not bioavailable to the model diatoms
Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus–carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5′-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5′-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus–carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5′-triphosphate, and lastly adenosine 5′-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains’ exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5′-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems.
more » « less- NSF-PAR ID:
- 10532628
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- FEMS Microbiology Ecology
- Volume:
- 100
- Issue:
- 9
- ISSN:
- 1574-6941
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary andThalassiosira weissflogii . However, in this study, we show that the previous finding was a misinterpretation based on a technical artefact of media preparation and that inorganic polyphosphate is actually widely bioavailable toThalassiosira pseudonana Thalassiosira spp. In fact, orthophosphate, inorganic tripolyphosphate (3polyP), adenosine triphosphate (ATP) and adenosine monophosphate supported equivalent growth rates and final growth yields within each of four strains ofThalassiosira spp. However, enzyme activity assays revealed in all cultures that cell‐associated hydrolysis rates of 3polyP were typically more than ~10‐fold higher than degradation of ATP and the model phosphomonoester compound 4‐methylumbelliferyl phosphate. These results build on prior work, which showed the preferential utilization of polyphosphates in the cell‐free exudates ofThalassiosira spp., and suggest that inorganic polyphosphates may be a key bioavailable source of P for marine phytoplankton. -
Abstract We optimized a high throughput method to quantify turnover rates of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in marine microbes from simultaneous measures of the respective stocks and phosphorylation rates. We combined a microbial adenylate extraction method using boiling 20 mM Tris buffer with purification and analysis by high pressure liquid chromatography optimized to quantify these intracellular adenylate concentrations in marine microbes. Additionally, we incorporated radiolabeled phosphate (32P
i ) incubations to quantify phosphorus (P) uptake rates and the phosphorylation rates for these adenylate compounds in microbial cells. With this method, we can directly assess the variations in microbial growth rates, metabolic turnover rates, energy charge, and adenylate storage. We applied and validated this method application with environmental samples from Biscayne Bay, Florida, and quantified adenylate turnover times of 12, 15, and 73 min, for ATP, ADP, and AMP, respectively. Future incorporation of this method into experiments and geographic surveys across marine environments will allow for direct assessments of changes in microbial metabolic activity in relation to other ecological variables. -
Three carboxamidequinoline ligands were synthesized and their complexes with Eu 3+ were used for recognition and detection of organic/inorganic phosphates in water. The signal transduction process is based on an “On–Off–On” switch in the fluorescence signal utilizing changes in the intramolecular charge transfer (ICT). The fluorescence emission of ligands is quenched upon exposure to the Eu 3+ (Off signal). Following the addition of the phosphate analytes the ligand–Eu 3+ complex disassembles, which results in the regeneration of the original emission of the ligand (On signal). In general, the Eu 3+ complexes show higher affinity towards adenosine 5′-triphosphate (ATP) and lower affinity to other phosphates, namely adenosine 5′-diphosphate (ADP), adenosine 5′-monophosphate (AMP), pyrophosphate (H 2 P 2 O 7 2− , PPi), and dihydrogenphosphate (H 2 PO 4 − , Pi).more » « less
-
Abstract A mechanistic understanding of dissolved organic phosphorus (DOP) utilization, and its role in the marine P cycle, requires knowledge of DOP molecular composition. In this study, a recently developed approach coupling electrodialysis and reverse osmosis with solution31P‐NMR analysis was used to examine DOP composition within a tidally dominated salt‐marsh estuary (North Inlet, South Carolina) over seasonal and tidal time frames. The isolation technique allowed for near complete recovery of the DOP pool (90% ± 13%;
n = 12) with six broad compound classes quantified: phosphonates, phosphomonoesters, phosphodiesters, pyrophosphate, di‐ and tri‐phosphate nucleotides (nucleoPα), and polyphosphate. Our results indicate that phosphomonoesters (ca. 61%) and phosphodiesters (ca. 31%) comprise the majority of the DOP pool, with relatively small contributions from pyrophosphates (ca. 4%), phosphonates (ca. 2%), nucleoPα(ca. 1%), and polyphosphates (ca. 1%). The study found no significant differences in DOP composition or concentration between tidal stages, despite significant tidal changes in dissolved organic nitrogen (DON):DOP stoichiometry. Significant seasonal variation was observed, with higher concentrations of phosphonates, nucleoPα, and monophosphates and lower phosphomonoester concentrations in Fall relative to all other seasons. We hypothesize that these seasonal variations reflect the balance between specific compound class seasonal production, lability, and local P demands associated with marine vs. terrestrial sources. Our results indicate that DOP composition exists at a dynamic equilibrium that is strongly conserved across diverse marine environments. -
The marine diazotroph
Crocosphaera watsonii provides fixed carbon (C) and nitrogen (N) to open‐ocean regimes, where nutrient deficiency controls productivity. The growth ofCrocosphaera can be limited by low phosphorus (P) concentrations in these oligotrophic environments. Biomarkers such as the high‐affinityABC transporter phosphate‐binding gene,pstS , are commonly used to monitor when such organisms are under P stress; however, transcriptional regulation of these markers is often complex and not well‐understood. In this study, we interrogated changes inpstS transcript levels inC. watsonii cells under P starvation, and in response to added dissolved inorganic phosphorus (DIP ), dissolved organic phosphorus (DOP ), and changing light levels. We observed elevated relativepstS transcript levels inC. watsonii WH 8501 atDIP concentrations below 60 and above 20 nmol · L−1. Transcript levels were suppressed by both inorganic and bioavailable organic phosphorus; however, the P stress response was more sensitive toDIP thanDOP sources. Increasing light intensity resulted in increased relativepstS transcript abundances independently of low external P, and seemed to exacerbate the physiological effects of P stress. The variable response to different P compounds and rapid and transient influence of high light onpstS transcript abundances suggests thatpstS is an indicator of internal P status inCrocosphaera .