Abstract. Flooding is of particular concern in low-lying coastal zones that are prone to flooding impacts from multiple drivers, such as oceanographic (storm surge and wave), fluvial (excessive river discharge), and/or pluvial (surface runoff). In this study, we analyse, for the first time, the compound flooding potential along the contiguous United States (CONUS) coastline from all flooding drivers, using observations and reanalysis data sets. We assess the overall dependence from observations by using Kendall's rank correlation coefficient (τ) and tail (extremal) dependence (χ). Geographically, we find the highest dependence between different drivers at locations in the Gulf of Mexico, southeastern, and southwestern coasts. Regarding different driver combinations, the highest dependence exists between surge–waves, followed by surge–precipitation, surge–discharge, waves–precipitation, and waves–discharge. We also perform a seasonal dependence analysis (tropical vs. extra-tropical season), where we find higher dependence between drivers during the tropical season along the Gulf and parts of the East Coast and stronger dependence during the extra-tropical season on the West Coast. Finally, we compare the dependence structure of different combinations of flooding drivers, using observations and reanalysis data, and use the Kullback–Leibler (KL) divergence to assess significance in the differences of the tail dependence structure. We find, for example, that models underestimate the tail dependence between surge–discharge on the East and West coasts and overestimate tail dependence between surge–precipitation on the East Coast, while they underestimate it on the West Coast. The comprehensive analysis presented here provides new insights on where the compound flooding potential is relatively higher, which variable combinations are most likely to lead to compounding effects, duringwhich time of the year (tropical versus extra-tropical season) compoundflooding is more likely to occur, and how well reanalysis data capture thedependence structure between the different flooding drivers.
more »
« less
Compound flood potential from storm surge and heavy precipitation in coastal China: dependence, drivers, and impacts
Abstract. The interaction between storm surge and concurrent precipitation is poorly understood in many coastal regions. This paper investigates the potential compound effects from these two flooding drivers along the coast of China for the first time by using the most comprehensive records of storm surge and precipitation. Statistically significant dependence between flooding drivers exists at the majority of locations that are analysed, but the strength of the correlation varies spatially and temporally and depending on how extreme events are defined. In general, we find higher dependence at the south-eastern tide gauges (TGs) (latitude < 30∘ N) compared to the northern TGs. Seasonal variations in the dependence are also evident. Overall there are more sites with significant dependence in the tropical cyclone (TC) season, especially in the summer. Accounting for past sea level rise further increases the dependence between flooding drivers, and future sea level rise will hence likely lead to an increase in the frequency of compound events. We also find notable differences in the meteorological patterns associated with events where both drivers are extreme versus events where only one driver is extreme. Events with both extreme drivers at south-eastern TG sites are caused by low-pressure systems with similar characteristics across locations, including high precipitable water content (PWC) and strong winds that generate high storm surge. Based on historical disaster damages records of Hong Kong, events with both extreme drivers account for the vast majority of damages and casualties, compared to univariate flooding events, where only one flooding driver occurred. Given the large coastal population and low capacity of drainage systems in many Chinese urban coastal areas, these findings highlight the necessity to incorporate compound flooding and its potential changes in a warming climate into risk assessments, urban planning, and the design of coastal infrastructure and flood defences.
more »
« less
- Award ID(s):
- 1929382
- PAR ID:
- 10331688
- Date Published:
- Journal Name:
- Hydrology and Earth System Sciences
- Volume:
- 25
- Issue:
- 8
- ISSN:
- 1607-7938
- Page Range / eLocation ID:
- 4403 to 4416
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Natural hazards such as hurricanes, floods, and wildfires cause devastating socio-economic impacts on communities. In South Florida, most of these hazards are becoming increasingly frequent and severe because of the warming climate, and changes in vulnerability and exposure, resulting in significant damage to infrastructure, homes, and businesses. To better understand the drivers of these impacts, we developed a bottom-up impact-based methodology that takes into account all relevant drivers for different types of hazards. We identify the specific drivers that co-occurred with socio-economic impacts and determine whether these extreme events were caused by single or multiple hydrometeorological drivers (i.e., compound events). We consider six types of natural hazards: hurricanes, severe storm/thunderstorms, floods, heatwaves, wildfire, and winter weather. Using historical, socio-economic loss data along with observations and reanalysis data for hydrometeorological drivers, we analyze how often these drivers contributed to the impacts of natural hazards in South Florida. We find that for each type of hazard, the relative importance of the drivers varies depending on the severity of the event. For example, wind speed is a key driver of the socio-economic impacts of hurricanes, while precipitation is a key driver of the impacts of flooding. We find that most of the high-impact events in South Florida were compound events, where multiple drivers contributed to the occurrences and impacts of the events. For example, more than 50% of the recorded flooding events were compound events and these contributed to 99% of total property damages and 98% of total crop damages associated with flooding in Miami-Dade County. Our results provide valuable insights into the drivers of natural hazard impacts in South Florida and can inform the development of more effective risk reduction strategies for improving the preparedness and resilience of the region against extreme events. Our bottom-up impact-based methodology can be applied to other regions and hazard types, allowing for more comprehensive and accurate assessments of the impacts of compound hazards.more » « less
-
A common feature within coastal cities is small, urbanized watersheds where the time of concentration is short, leading to vulnerability to flash flooding during coastal storms that can also cause storm surge. While many recent studies have provided evidence of dependency in these two flood drivers for many coastal areas worldwide, few studies have investigated their co-occurrence locally in detail or the storm types that are involved. Here we present a bivariate statistical analysis framework with historical rainfall and storm surge and tropical cyclone (TC) and extratropical cyclone (ETC) track data, using New York City (NYC) as a mid-latitude demonstration site where these storm types play different roles. In contrast to prior studies that focused on daily or longer durations of rain, we apply hourly data and study simultaneous drivers and lags between them. We quantify characteristics of compound flood drivers, including their dependency, magnitude, lag time, and joint return periods (JRPs), separately for TCs, ETCs, non-cyclone-associated events, and merged data from all events. We find TCs have markedly different driver characteristics from other storm types and dominate the joint probabilities of the most extreme rain surge compound events, even though they occur much less frequently. ETCs are the predominant source of more frequent moderate compound events. The hourly data also reveal subtle but important spatial differences in lag times between the joint flood drivers. For Manhattan and southern shores of NYC during top-ranked TC rain events, rain intensity has a strong negative correlation with lag time to peak surge, promoting pluvial–coastal compound flooding. However, for the Bronx River in northern NYC, fluvial–coastal compounding is favored due to a 2–6 h lag from the time of peak rain to peak surge.more » « less
-
Abstract Coastal areas are subject to the joint risk associated with rainfall‐driven flooding and storm surge hazards. To capture this dependency and the compound nature of these hazards, bivariate modelling represents a straightforward and easy‐to‐implement approach that relies on observational records. Most existing applications focus on a single tide gauge–rain gauge/streamgauge combination, limiting the applicability of bivariate modelling to develop high‐resolution space–time design events that can be used to quantify the dynamic, that is, varying in space and time, compound flood hazard in coastal basins. Moreover, there is a need to recognize that not all extreme events always come from a single population, but can reflect a mixture of different generating mechanisms. Therefore, this paper describes an empirical approach to develop design storms with high‐resolution in space and time (i.e., ~5 km and hourly) for different joint annual exceedance probabilities. We also stratify extreme rainfall and storm surge events depending on whether they were caused by tropical cyclones (TCs) or not. We find that there are significant differences between the TC and non‐TC populations, with very different dependence structures that are missed if we treat all the events as coming from a single population. While we apply this methodology to one basin near Houston, Texas, our approach is general enough to make it applicable for any coastal basin exposed to compounding flood hazards from storm surge and rainfall‐induced flooding.more » « less
-
Storm surges are the most important driver of flooding in many coastal areas. Understanding the spatial extent of storm surge events has important financial and practical implications for flood risk management, reinsurance, infrastructure reliability and emergency response. In this paper, we apply a new tracking algorithm to a high-resolution surge hindcast (CODEC, 1980–2017) to characterize the spatial dependence and temporal evolution of extreme surge events along the coastline of the UK and Ireland. We quantify the severity of each spatial event based on its footprint extremity to select and rank the collection of events. Several surge footprint types are obtained based on the most impacted coastal stretch from each particular event, and these are linked to the driving storm tracks. Using the collection of the extreme surge events, we assess the spatial distribution and interannual variability of the duration, size, severity, and type. We find that the northeast coastline is most impacted by the longest and largest storm surge events, while the English Channel experiences the shortest and smallest storm surge events. The interannual variability indicates that the winter seasons of 1989-90 and 2013–14 were the most serious in terms of the number of events and their severity, based on the return period along the affected coastlines. The most extreme surge event and the highest number of events occurred in the winter season 1989–90, while the proportion of events with larger severities was higher during the winter season 2013–14. This new spatial analysis approach of surge extremes allows us to distinguish several categories of spatial footprints of events around the UK/Ireland coast and link these to distinct storm tracks. The spatial dependence structures detected can improve multivariate statistical methods which are crucial inputs to coastal flooding assessments.more » « less
An official website of the United States government

