skip to main content


Title: Zircon (U-Th)/He thermochronology of Grand Canyon resolves 1250 Ma unroofing at the Great Unconformity and <20 Ma canyon carving
Abstract Our study used zircon (U-Th)/He (ZHe) thermochronology to resolve cooling events of Precambrian basement below the Great Unconformity surface in the eastern Grand Canyon, United States. We combined new ZHe data with previous thermochronometric results to model the <250 °C thermal history of Precambrian basement over the past >1 Ga. Inverse models of ZHe date-effective uranium (eU) concentration, a relative measure of radiation damage that influences closure temperature, utilize He diffusion and damage annealing and suggest that the main phase of Precambrian cooling to <200 °C was between 1300 and 1250 Ma. This result agrees with mica and potassium feldspar 40Ar/39Ar thermochronology showing rapid post–1400 Ma cooling, and both are consistent with the 1255 Ma depositional age for the Unkar Group. At the young end of the timescale, our data and models are also highly sensitive to late-stage reheating due to burial beneath ∼3–4 km of Phanerozoic strata prior to ca. 60 Ma; models that best match observed date-eU trends show maximum temperatures of 140–160 °C, in agreement with apatite (U-Th)/He and fission-track data. Inverse models also support multi-stage Cenozoic cooling, with post–20 Ma cooling from ∼80 to 20 °C reflecting partial carving of the eastern Grand Canyon, and late rapid cooling indicated by 3–7 Ma ZHe dates over a wide range of high eU. Our ZHe data resolve major basement exhumation below the Great Unconformity during the Mesoproterozoic (1300–1250 Ma), and “young” (20–0 Ma) carving of Grand Canyon, but show little sensitivity to Neoproterozoic and Cambrian basement unroofing components of the composite Great Unconformity.  more » « less
Award ID(s):
1848013 1955078 1735788
NSF-PAR ID:
10331703
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Geology
Volume:
50
Issue:
2
ISSN:
0091-7613
Page Range / eLocation ID:
222 to 226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep-time thermochronology by the zircon (U-Th)/He (ZHe) method is an emerging field of study with promise for constraining Precambrian rock thermal and exhumation histories. The Grand Canyon provides an opportunity to further explore this method because excellent geologic constraints can be integrated with multiple thermochronometers to address important questions about the spatial variability of basement erosion below the sub-Cambrian Great Unconformity composite erosional surface. In this study, we synthesize new ZHe results (n = 26) and published (n = 77) ZHe data with new K-feldspar 40Ar/39Ar data and models (n = 4) from Precambrian basement rocks of the Grand Canyon, USA. We use HeFTy and QTQt thermal history modeling to evaluate the ability of the individual ZHe and K-feldspar 40Ar/39Ar thermochronometric data sets to resolve Precambrian thermal histories and compare those results with jointly modeled data using the QTQt software. We also compare Precambrian basement thermal histories of the eastern and western Grand Canyon, where the eastern Grand Canyon has ∼4 km of Grand Canyon Supergroup strata deposited and preserved, and the western Grand Canyon, where the Supergroup was either never deposited or not preserved. In all locations, models constrained only by ZHe data have limited resolving power for the past ∼600 m.y., compared to models that combine K-feldspar 40Ar/39Ar and ZHe data, which extends the recorded history into the Mesoproterozoic. Our model results suggest that two regional basement unroofing events occurred. A ca. 1350−1250 Ma cooling event is interpreted to record basement exhumation from depths of ∼10 km, and a second cooling episode (∼200−100 °C total) records exhumation from a depth of ∼3 km to 7 km to near-surface conditions between ca. 600 Ma and 500 Ma. Easternmost Grand Canyon models suggest that the preserved maximum ∼4 km thickness of the Grand Canyon Supergroup (with burial heating at ∼100 °C) approximates the total original Mesoproterozoic and Neoproterozoic stratal thickness. Whether these Supergroup rocks were present and then eroded in the western Grand Canyon, as suggested by regional geologic studies, or were never deposited is not constrained by thermochronological data.

     
    more » « less
  2. Abstract The Great Unconformity of the Rocky Mountain region (western North America), where Precambrian crystalline basement is nonconformably overlain by Phanerozoic strata, represents the removal of as much as 1.5 b.y. of rock record during 10-km-scale basement exhumation. We evaluate the timing of exhumation of basement rocks at five locations by combining geologic data with multiple thermochronometers. 40Ar/39Ar K-feldspar multi-diffusion domain (MDD) modeling indicates regional multi-stage basement cooling from 275 to 150 °C occurred at 1250–1100 Ma and/or 1000–700 Ma. Zircon (U-Th)/He (ZHe) dates from the Rocky Mountains range from 20 to 864 Ma, and independent forward modeling of ZHe data is also most consistent with multi-stage cooling. ZHe inverse models at five locations, combined with K-feldspar MDD and sample-specific geochronologic and/or thermochronologic constraints, document multiple pulses of basement cooling from 250 °C to surface temperatures with a major regional basement exhumation event 1300–900 Ma, limited cooling in some samples during the 770–570 Ma breakup of Rodinia and/or the 717–635 Ma snowball Earth, and ca. 300 Ma Ancestral Rocky Mountains cooling. These data argue for a tectonic control on basement exhumation leading up to formation of the Precambrian-Cambrian Great Unconformity and document the formation of composite erosional surfaces developed by faulting and differential uplift. 
    more » « less
  3. null (Ed.)
    Abstract The provocative hypothesis that the Shinumo Sandstone in the depths of Grand Canyon was the source for clasts of orthoquartzite in conglomerate of the Sespe Formation of coastal California, if verified, would indicate that a major river system flowed southwest from the Colorado Plateau to the Pacific Ocean prior to opening of the Gulf of California, and would imply that Grand Canyon had been carved to within a few hundred meters of its modern depth at the time of this drainage connection. The proposed Eocene Shinumo-Sespe connection, however, is not supported by detrital zircon nor paleomagnetic-inclination data and is refuted by thermochronology that shows that the Shinumo Sandstone of eastern Grand Canyon was >60 °C (∼1.8 km deep) and hence not incised at this time. A proposed 20 Ma (Miocene) Shinumo-Sespe drainage connection based on clasts in the Sespe Formation is also refuted. We point out numerous caveats and non-unique interpretations of paleomagnetic data from clasts. Further, our detrital zircon analysis requires diverse sources for Sespe clasts, with better statistical matches for the four “most-Shinumo-like” Sespe clasts with quartzites of the Big Bear Group and Ontario Ridge metasedimentary succession of the Transverse Ranges, Horse Thief Springs Formation from Death Valley, and Troy Quartzite of central Arizona. Diverse thermochronologic and geologic data also refute a Miocene river pathway through western Grand Canyon and Grand Wash trough. Thus, Sespe clasts do not require a drainage connection from Grand Canyon or the Colorado Plateau and provide no constraints for the history of carving of Grand Canyon. Instead, abundant evidence refutes the “old” (70–17 Ma) Grand Canyon models and supports a <6 Ma Grand Canyon. 
    more » « less
  4. Abstract

    The Great Unconformity is a widely distributed surface separating Precambrian rocks from overlying Phanerozoic sedimentary sequences. The causes and implications of this feature, and whether it represents a singular global event, are much debated. Here, we present new apatite (U‐Th)/He (AHe) thermochronologic data from the central Canadian Shield that constrain when the Precambrian basement last cooled to near‐surface temperatures, likely via exhumation, before deposition of overlying early Paleozoic sedimentary sequences that mark the Great Unconformity. AHe data from 11 samples (n = 57) across a broad region define a similar date‐eU pattern, implying a common thermal history. Higher eU (>25 ppm) apatite form distinct flat profiles of reproducible dates at ∼510 ± 49 Ma (mean and 1σstandard deviation), while lower eU (<25 ppm) apatite define a positive date‐eU trend with younger dates. The data patterns, geologic context, and thermal history modeling point toward >3 km of erosion across the entire ∼450,000 km2study area between 650 and 440 Ma, followed by modest reheating during later burial. Plume activity associated with intracratonic basin formation or continental rifting/breakup may have caused this erosion event. The post‐650 Ma timing of the last major sub‐Great Unconformity exhumation phase in this region implies a late Great Unconformity that is younger than inferred elsewhere in North America. This suggests that this feature is likely the result of multiple temporally distinct erosion events with differing footprints and mechanisms.

     
    more » « less
  5. Abstract The Great Unconformity has been recognized for more than a century, but only recently have its origins become a subject of debate. Hypotheses suggest global Snowball Earth glaciations and tectonic processes associated with the supercontinent Rodinia as drivers of widespread kilometer-scale erosion in the late Neoproterozoic. We present new integrated zircon and apatite (U-Th)/He and fission-track thermochronology from Precambrian basement samples of the central Canadian Shield in northern Manitoba to test these ideas. Bayesian inverse modeling indicates that 150–200 °C of cooling (>3 km of exhumation) occurred simultaneously with Cryogenian glaciations at ca. 690–650 Ma within interior North America. This estimate for the timing of unroofing is more precise than previous appraisals and does not align with any known tectonic or magmatic events (i.e., large igneous province eruptions) potentially associated with the supercontinent cycle that occurred during the late Proterozoic along the Laurentian margins. Based on these results and interpretations, the timing and magnitude of exhumation is best explained by glacial erosion, and further establishes the importance of multiple thermochronometers for resolving detailed deeptime thermal histories. 
    more » « less