skip to main content


Title: Satellite detection of dinoflagellate blooms off California by UV reflectance ratios
As harmful algae blooms are increasing in frequency and magnitude, one goal of a new generation of higher spectral resolution satellite missions is to improve the potential of satellite optical data to monitor these events. A satellite-based algorithm proposed over two decades ago was used for the first time to monitor the extent and temporal evolution of a massive bloom of the dinoflagellate Lingulodinium polyedra off Southern California during April and May 2020. The algorithm uses ultraviolet (UV) data that have only recently become available from the single ocean color sensor on the Japanese GCOM-C satellite. Dinoflagellates contain high concentrations of mycosporine-like amino acids and release colored dissolved organic matter, both of which absorb strongly in the UV part of the spectrum. Ratios <1 of remote sensing reflectance of the UV band at 380 nm to that of the blue band at 443 nm were used as an indicator of the dinoflagellate bloom. The satellite data indicated that an observed, long, and narrow nearshore band of elevated chlorophyll-a (Chl-a) concentrations, extending from northern Baja to Santa Monica Bay, was dominated by L. polyedra. In other high Chl-a regions, the ratios were >1, consistent with historical observations showing a sharp transition from dinoflagellate- to diatom-dominated waters in these areas. UV bands are thus potentially useful in the remote sensing of phytoplankton blooms but are currently available only from a single ocean color sensor. As several new satellites such as the NASA Plankton, Aerosol, Cloud, and marine Ecosystem mission will include UV bands, new algorithms using these bands are needed to enable better monitoring of blooms, especially potentially harmful algal blooms, across large spatiotemporal scales.  more » « less
Award ID(s):
1637632
NSF-PAR ID:
10331719
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Elementa: Science of the Anthropocene
Volume:
9
Issue:
1
ISSN:
2325-1026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The size and distribution of Phytoplankton populations are indicators of the ecological status of a water body. The chlorophyll-a (Chl-a) concentration is estimated as a proxy for the distribution of phytoplankton biomass. Remote sensing is the only practical method for the synoptic assessment of Chl-a at large spatial and temporal scales. Long-term records of ocean color data from the MODIS Aqua Sensor have proven inadequate to assess Chl-a due to the lack of a robust ocean color algorithm. Chl-a estimation in shallow and coastal water bodies has been a challenge and existing operational algorithms are only suitable for deeper water bodies. In this study, the Ocean Color 3M (OC3M) derived Chl-a concentrations were compared with observed data to assess the performance of the OC3M algorithm. Subsequently, a regression analysis between in situ Chl-a and remote sensing reflectance was performed to obtain a green-red band algorithm for coastal (case 2) water. The OC3M algorithm yielded an accurate estimate of Chl-a for deep ocean (case 1) water (RMSE = 0.007, r2 = 0.518, p < 0.001), but failed to perform well in the coastal (case 2) water of Chesapeake Bay (RMSE = 23.217, r2 = 0.009, p = 0.356). The algorithm developed in this study predicted Chl-a more accurately in Chesapeake Bay (RMSE = 4.924, r2 = 0.444, p < 0.001) than the OC3M algorithm. The study indicates a maximum band ratio formulation using green and red bands could improve the satellite estimation of Chl-a in coastal waters. 
    more » « less
  2. Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel. 
    more » « less
  3. Harmful and nuisance algal blooms are becoming a greater concern to public health, riverine ecosystems, and recreational uses of inland waterways. Algal bloom proliferation has increased in the Upper Clark Fork River due to a combination of warming water temperatures, naturally high phosphorus levels, and an influx of nitrogen from various sources. To improve understanding of bloom dynamics and how they affect water quality, often measured as algal biomass measured through pigment standing crops, a UAV-based hyperspectral imaging system was deployed to monitor several locations along the Upper Clark Fork River in western Montana. Image data were collected across the spectral range of 400–1000 nm with 2.1 nm spectral resolution during two field sampling campaigns in 2021. Included are methods to estimate chl a and phycocyanin standing crops using regression analysis of salient wavelength bands, before and after separating the pigments according to their growth form. Estimates of chl a and phycocyanin standing crops generated through a linear regression analysis are compared to in situ data, resulting in a maximum R2 of 0.96 for estimating fila/epip chl-a and 0.94 when estimating epiphytic phycocyanin. Estimates of pigment standing crops from total abundance, epiphytic, and the sum of filamentous and epiphytic sources are also included, resulting in a promising method for remotely estimating algal standing crops. This method addresses the shortcomings of current monitoring techniques, which are limited in spatial and temporal scale, by proposing a method for rapid collection of high-spatial-resolution pigment abundance estimates. 
    more » « less
  4. The Galápagos Archipelago is a globally significant biodiversity hotspot. However, compared to the relatively well-known megafauna, the distribution and ecological significance of marine protists in this system are poorly understood. To gain an understanding of the protistan assemblages across trophic modes, an intensive oceanographic survey was conducted in the Galápagos Marine Reserve (GMR) in October of 2018. The Equatorial Undercurrent (EUC)-influenced region had higher chlorophyll- a (Chl- a ) concentrations than those of the eastern regions of the archipelago, along with higher abundances of protistan grazers. Specifically, proportions of autotrophic and potentially mixotrophic dinoflagellates were higher in the EUC, whereas in the eastern regions, heterotrophic dinoflagellates and chlorophytes dominated. Taxonomic composition and biochemical indicators suggested proportions of micrograzers and their associated heterotrophic biomass was higher in the oligotrophic, low Chl- a regions in the east. We also report observations from a dinoflagellate bloom in the western archipelago, which was heavily influenced by upwelling of the EUC. The red tide-forming dinoflagellate Scrippsiella lachrymosa was highly detected through light microscopy and DNA amplicon sequencing. In addition, the heterotrophic dinoflagellate Polykrikos kofoidii was detected and, based on cell densities observed in this study and grazing rates obtained from the literature, estimated to potentially graze up to 62% of S. lachrymosa bloom population. Our findings thus provide new insights into the composition of micrograzers and their potential roles in structuring protistan communities in the Galápagos Archipelago. 
    more » « less
  5. Li, Delei (Ed.)
    Decreased sea ice cover in the northern Bering Sea has altered annual phytoplankton phenology owing to an expansion of open water duration and its impact on ocean stratification. Limitations of satellite remote sensing such as the inability to detect bloom activity throughout the water column, under ice, and in cloudy conditions dictate the need for shipboard based measurements to provide more information on bloom dynamics. In this study, we adapted remote sensing land cover classification techniques to provide a new means to determine bloom stage from shipboard samples. Specifically, we used multiyear satellite time series of chlorophyll a to determine whether in-situ blooms were actively growing or mature (i.e., past-peak) at the time of field sampling. Field observations of chlorophyll a and pheophytin (degraded and oxidized chlorophyll products) were used to calculate pheophytin proportions, i.e., (Pheophytin/(Chlorophyll a + Pheophytin)) and empirically determine whether the bloom was growing or mature based on remotely sensed bloom stages. Data collected at 13 north Bering Sea stations each July from 2013–2019 supported a pheophytin proportion of 28% as the best empirical threshold to distinguish a growing vs. mature bloom stage. One outcome was that low vs. high sea ice years resulted in significantly different pheophytin proportions in July; in years with low winter-to-spring ice, more blooms with growing status were observed, compared to later stage, more mature blooms following springs with abundant seasonal sea ice. The detection of growing blooms in July following low ice years suggests that changes in the timing of the spring bloom triggers cascading effects on mid-summer production. 
    more » « less