skip to main content


Title: Satellite Estimation of Chlorophyll-a Using Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor in Shallow Coastal Water Bodies: Validation and Improvement
The size and distribution of Phytoplankton populations are indicators of the ecological status of a water body. The chlorophyll-a (Chl-a) concentration is estimated as a proxy for the distribution of phytoplankton biomass. Remote sensing is the only practical method for the synoptic assessment of Chl-a at large spatial and temporal scales. Long-term records of ocean color data from the MODIS Aqua Sensor have proven inadequate to assess Chl-a due to the lack of a robust ocean color algorithm. Chl-a estimation in shallow and coastal water bodies has been a challenge and existing operational algorithms are only suitable for deeper water bodies. In this study, the Ocean Color 3M (OC3M) derived Chl-a concentrations were compared with observed data to assess the performance of the OC3M algorithm. Subsequently, a regression analysis between in situ Chl-a and remote sensing reflectance was performed to obtain a green-red band algorithm for coastal (case 2) water. The OC3M algorithm yielded an accurate estimate of Chl-a for deep ocean (case 1) water (RMSE = 0.007, r2 = 0.518, p < 0.001), but failed to perform well in the coastal (case 2) water of Chesapeake Bay (RMSE = 23.217, r2 = 0.009, p = 0.356). The algorithm developed in this study predicted Chl-a more accurately in Chesapeake Bay (RMSE = 4.924, r2 = 0.444, p < 0.001) than the OC3M algorithm. The study indicates a maximum band ratio formulation using green and red bands could improve the satellite estimation of Chl-a in coastal waters.  more » « less
Award ID(s):
1832229 1237517
NSF-PAR ID:
10120897
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Water
Volume:
11
Issue:
8
ISSN:
2073-4441
Page Range / eLocation ID:
1621
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As harmful algae blooms are increasing in frequency and magnitude, one goal of a new generation of higher spectral resolution satellite missions is to improve the potential of satellite optical data to monitor these events. A satellite-based algorithm proposed over two decades ago was used for the first time to monitor the extent and temporal evolution of a massive bloom of the dinoflagellate Lingulodinium polyedra off Southern California during April and May 2020. The algorithm uses ultraviolet (UV) data that have only recently become available from the single ocean color sensor on the Japanese GCOM-C satellite. Dinoflagellates contain high concentrations of mycosporine-like amino acids and release colored dissolved organic matter, both of which absorb strongly in the UV part of the spectrum. Ratios <1 of remote sensing reflectance of the UV band at 380 nm to that of the blue band at 443 nm were used as an indicator of the dinoflagellate bloom. The satellite data indicated that an observed, long, and narrow nearshore band of elevated chlorophyll-a (Chl-a) concentrations, extending from northern Baja to Santa Monica Bay, was dominated by L. polyedra. In other high Chl-a regions, the ratios were >1, consistent with historical observations showing a sharp transition from dinoflagellate- to diatom-dominated waters in these areas. UV bands are thus potentially useful in the remote sensing of phytoplankton blooms but are currently available only from a single ocean color sensor. As several new satellites such as the NASA Plankton, Aerosol, Cloud, and marine Ecosystem mission will include UV bands, new algorithms using these bands are needed to enable better monitoring of blooms, especially potentially harmful algal blooms, across large spatiotemporal scales. 
    more » « less
  2. Abstract Water quality monitoring is relevant for protecting the designated, or beneficial uses, of water such as drinking, aquatic life, recreation, irrigation, and food supply that support the economy, human well-being, and aquatic ecosystem health. Managing finite water resources to support these designated uses requires information on water quality so that managers can make sustainable decisions. Chlorophyll- a (chl- a , µg L −1 ) concentration can serve as a proxy for phytoplankton biomass and may be used as an indicator of increased anthropogenic nutrient stress. Satellite remote sensing may present a complement to in situ measures for assessments of water quality through the retrieval of chl- a with in-water algorithms. Validation of chl- a algorithms across US lakes improves algorithm maturity relevant for monitoring applications. This study compares performance of the Case 2 Regional Coast Colour (C2RCC) chl- a retrieval algorithm, a revised version of the Maximum-Peak Height (MPH (P) ) algorithm, and three scenarios merging these two approaches. Satellite data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS) and the Ocean and Land Colour Instrument (OLCI), while field observations were obtained from 181 lakes matched with U.S. Water Quality Portal chl- a data. The best performance based on mean absolute multiplicative error (MAE mult ) was demonstrated by the merged algorithm referred to as C 15 −M 10 (MAE mult  = 1.8, bias mult  = 0.97, n  = 836). In the C 15 −M 10 algorithm, the MPH (P) chl- a value was retained if it was > 10 µg L −1 ; if the MPH (P) value was ≤ 10 µg L −1 , the C2RCC value was selected, as long as that value was < 15 µg L −1 . Time-series and lake-wide gradients compared against independent assessments from Lake Champlain and long-term ecological research stations in Wisconsin were used as complementary examples supporting water quality reporting requirements. Trophic state assessments for Wisconsin lakes provided examples in support of inland water quality monitoring applications. This study presents and assesses merged adaptations of chl- a algorithms previously reported independently. Additionally, it contributes to the transition of chl- a algorithm maturity by quantifying error statistics for a number of locations and times. 
    more » « less
  3. Abstract. Ocean color remote sensing is a challenging task over coastal watersdue to the complex optical properties of aerosols and hydrosols. Inorder to conduct accurate atmospheric correction, we previously implementeda joint retrieval algorithm, hereafter referred to as the Multi-Angular Polarimetric Ocean coLor (MAPOL) algorithm,to obtain the aerosol and water-leavingsignal simultaneously.The MAPOL algorithm has been validated with syntheticdata generated by a vector radiative transfer model, and good retrievalperformance has been demonstrated in terms of both aerosol and oceanwater optical properties (Gao et al., 2018).In this work we applied the algorithm to airborne polarimetricmeasurements from the Research Scanning Polarimeter (RSP) over bothopen and coastal ocean waters acquired in twofield campaigns: the Ship-Aircraft Bio-Optical Research (SABOR) in2014 and the North Atlantic Aerosols and Marine Ecosystems Study(NAAMES) in 2015 and 2016. Two different yet related bio-opticalmodels are designed for ocean water properties. One model aligns withtraditional open ocean water bio-optical models that parameterize theocean optical properties in terms of the concentration of chlorophyll a. The other is a generalized bio-optical model for coastal watersthat includes seven free parameters to describe the absorption andscattering by phytoplankton, colored dissolved organic matter, andnonalgal particles. The retrieval errors of both aerosol opticaldepth and the water-leaving radiance are evaluated. Through thecomparisons with ocean color data products from both in situmeasurements and the Moderate Resolution Imaging Spectroradiometer(MODIS), and the aerosol product from both the High SpectralResolution Lidar (HSRL) and the Aerosol Robotic Network (AERONET), the MAPOL algorithm demonstrates both flexibility and accuracy in retrievingaerosol and water-leaving radiance properties under various aerosoland ocean water conditions.

     
    more » « less
  4. Abstract

    In estuaries, local processes such as changing material loads from the watershed and complex circulation create dynamic environments with respect to ecosystem metabolism and carbonate chemistry that can strongly modulate impacts of global atmospheric CO2increases on estuarine pH. Long‐term (> 20 yr) surface water pH records from the USA's two largest estuaries, Chesapeake Bay (CB) and Neuse River Estuary‐Pamlico Sound (NRE‐PS) were examined to understand the relative importance of atmospheric forcing vs. local processes in controlling pH. At the estuaries’ heads, pH increases in CB and decreases in NRE‐PS were driven primarily by changing ratios of river alkalinity to dissolved inorganic carbon concentrations. In upper reaches of CB and middle reaches of the NRE‐PS, pH increases were associated with increases in phytoplankton biomass. There was no significant pH change in the lower NRE‐PS and only the polyhaline CB showed a pH decline consistent with ocean acidification. In both estuaries, interannual pH variability showed robust, positive correlations with chlorophylla(Chla) during the spring in mid to lower estuarine regions indicative of strong control by net phytoplankton production. During summer and fall, Chlaand pH negatively correlated in lower regions of both estuaries, given a shift toward heterotrophy driven by changes in phytoplankton community structure and increases in the load ratio of dissolved inorganic nitrogen to organic carbon. Tropical cyclones episodically depressed pH due to vertical mixing of CO2rich bottom waters and post‐storm terrestrial organic matter loading. Local processes we highlight represent a significant challenge for predicting future estuarine pH.

     
    more » « less
  5. Deep learning (DL) convolutional neural networks (CNNs) have been rapidly adapted in very high spatial resolution (VHSR) satellite image analysis. DLCNN-based computer visions (CV) applications primarily aim for everyday object detection from standard red, green, blue (RGB) imagery, while earth science remote sensing applications focus on geo object detection and classification from multispectral (MS) imagery. MS imagery includes RGB and narrow spectral channels from near- and/or middle-infrared regions of reflectance spectra. The central objective of this exploratory study is to understand to what degree MS band statistics govern DLCNN model predictions. We scaffold our analysis on a case study that uses Arctic tundra permafrost landform features called ice-wedge polygons (IWPs) as candidate geo objects. We choose Mask RCNN as the DLCNN architecture to detect IWPs from eight-band Worldview-02 VHSR satellite imagery. A systematic experiment was designed to understand the impact on choosing the optimal three-band combination in model prediction. We tasked five cohorts of three-band combinations coupled with statistical measures to gauge the spectral variability of input MS bands. The candidate scenes produced high model detection accuracies for the F1 score, ranging between 0.89 to 0.95, for two different band combinations (coastal blue, blue, green (1,2,3) and green, yellow, red (3,4,5)). The mapping workflow discerned the IWPs by exhibiting low random and systematic error in the order of 0.17–0.19 and 0.20–0.21, respectively, for band combinations (1,2,3). Results suggest that the prediction accuracy of the Mask-RCNN model is significantly influenced by the input MS bands. Overall, our findings accentuate the importance of considering the image statistics of input MS bands and careful selection of optimal bands for DLCNN predictions when DLCNN architectures are restricted to three spectral channels. 
    more » « less