skip to main content

This content will become publicly available on December 1, 2023

Title: Ice front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelf
Abstract Pine Island Ice Shelf (PIIS) buttresses the Pine Island Glacier, the key contributor to sea-level rise. PIIS has thinned owing to ocean-driven melting, and its calving front has retreated, leading to buttressing loss. PIIS melting depends primarily on the thermocline variability in its front. Furthermore, local ocean circulation shifts adjust heat transport within Pine Island Bay (PIB), yet oceanic processes underlying the ice front retreat remain unclear. Here, we report a PIB double-gyre that moves with the PIIS calving front and hypothesise that it controls ocean heat input towards PIIS. Glacial melt generates cyclonic and anticyclonic gyres near and off PIIS, and meltwater outflows converge into the anticyclonic gyre with a deep-convex-downward thermocline. The double-gyre migrated eastward as the calving front retreated, placing the anticyclonic gyre over a shallow seafloor ridge, reducing the ocean heat input towards PIIS. Reconfigurations of meltwater-driven gyres associated with moving ice boundaries might be crucial in modulating ocean heat delivery to glacial ice.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Nature Communications
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Marine-terminating glaciers lose mass through melting and iceberg calving, and we find that meltwater drainage systems influence calving timing at Helheim Glacier, a tidewater glacier in East Greenland. Meltwater feeds a buoyant subglacial discharge plume at the terminus of Helheim Glacier, which rises along the glacial front and surfaces through the mélange. Here, we use high-resolution satellite and time-lapse imagery to observe the surface expression of this meltwater plume and how plume timing and location compare with that of calving and supraglacial meltwater pooling from 2011 to 2019. The plume consistently appeared at the central terminus even as the glacier advanced and retreated, fed by a well-established channelized drainage system with connections to supraglacial water. All full-thickness calving episodes, both tabular and non-tabular, were separated from the surfacing plume by either time or by space. We hypothesize that variability in subglacial hydrology and basal coupling drive this inverse relationship between subglacial discharge plumes and full-thickness calving. Surfacing plumes likely indicate a low-pressure subglacial drainage system and grounded terminus, while full-thickness calving occurrence reflects a terminus at or close to flotation. Our records of plume appearance and full-thickness calving therefore represent proxies for the grounding state of Helheim Glacier throughmore »time.« less
  2. Abstract Antarctic glacial meltwater is thought to play an important role in determining large-scale Southern Ocean climate trends, yet recent modeling efforts have proceeded without a good understanding of how its vertical distribution in the water column is set. To rectify this, here we conduct new large-eddy simulations of the ascent of a buoyant meltwater plume after its escape from beneath an Antarctic ice shelf. We find that the meltwater’s settling depth is primarily a function of the buoyancy forcing per unit width of the source and the ambient stratification, consistent with the classical theory of turbulent buoyant plumes and in contrast to previous work that suggested an important role for centrifugal instability. Our results further highlight the significant role played by localized variability in stratification; this helps explain observed interannual variability in the vertical meltwater distribution near Pine Island Glacier. Because of the vast heterogeneity in mass loss rates and ambient conditions at different Antarctic ice shelves, a dynamic parameterization of meltwater settling depth may be crucial for accurately simulating high-latitude climate in a warming world; we discuss how this may be developed following this work, and where the remaining challenges lie.
  3. The loss or thinning of buttressing ice shelves and accompanying changes in grounding-zone stress balance are commonly implicated as the primary trigger for grounding-line retreat, such as that observed in Amundsen Sea outlet glaciers today. Ice-shelf thinning is mostly attributed to the presence of warm ocean waters beneath the shelves. However, climate model projections show that summer air temperatures could soon exceed the threshold for widespread meltwater production on ice-shelf surfaces. This has serious implications for their future stability, because they are vulnerable to water-induced flexural stresses and water-aided crevasse penetration, termed ‘hydrofracturing’. Once initiated, the rate of shelf loss through hydrofracturing can far exceed that caused by sub-surface melting, and could result in the complete loss of some buttressing ice shelves, with marine grounding lines suddenly becoming calving ice fronts. In places where those exposed ice fronts are thick (>900m) and crevassed, deviatoric stresses can exceed the strength of the ice and the cliff face will fail mechanically, leading to rapid calving like that seen in analogous settings such as Jakobshavn on Greenland. Here we explore the implications of hydrofacturing and subsequent ice-cliff collapse in a warming climate, by parameterizing these processes in a hybrid ice sheet-shelf model. Modelmore »sensitivities to meltwater production and to ice-cliff calving rate (a function of cliff height above the stress balance threshold triggering brittle failure) are calibrated to match modern observations of calving and thinning. We find the potential for major ice-sheet retreat if global mean temperature rises more than ~2ºC above preindustrial. In the model, Antarctic calving rates at thick ice fronts are not allowed to exceed those observed in Greenland today. This may be a conservative assumption, considering the very different spatial scales of Antarctic outlets, such as Thwaites. Nonetheless, simulations following a ‘worst case’ RCP8.5 scenario produce rates of sea-level rise measured in cm per year by the end of this century. Clearly, the potential for brittle processes to deliver ice to the ocean, in addition to viscous and basal processes, needs to be better constrained through more complete, physically based representations of calving.« less
  4. Abstract

    Determining the injection of glacial meltwater into polar oceans is crucial for quantifying the climate system response to ice sheet mass loss. However, meltwater is poorly observed and its pathways poorly known, especially in winter. Here we present winter meltwater distribution near Pine Island Glacier using data collected by tagged seals, revealing a highly variable meltwater distribution with two meltwater-rich layers in the upper 250 m and at around 450 m, connected by scattered meltwater-rich columns. We show that the hydrographic signature of meltwater is clearest in winter, when its presence can be unambiguously mapped. We argue that the buoyant meltwater provides near-surface heat that helps to maintain polynyas close to ice shelves. The meltwater feedback onto polynyas and air-sea heat fluxes demonstrates that although the processes determining the distribution of meltwater are small-scale, they are important to represent in Earth system models.

  5. Abstract Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude variability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate landward from the ice front at close to shallow-water gravity-wave speeds (~70 m s −1 ). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ~3 km s −1 . Flexural-gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIGmore »ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity-wave excitation.« less