skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ice front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelf
Abstract Pine Island Ice Shelf (PIIS) buttresses the Pine Island Glacier, the key contributor to sea-level rise. PIIS has thinned owing to ocean-driven melting, and its calving front has retreated, leading to buttressing loss. PIIS melting depends primarily on the thermocline variability in its front. Furthermore, local ocean circulation shifts adjust heat transport within Pine Island Bay (PIB), yet oceanic processes underlying the ice front retreat remain unclear. Here, we report a PIB double-gyre that moves with the PIIS calving front and hypothesise that it controls ocean heat input towards PIIS. Glacial melt generates cyclonic and anticyclonic gyres near and off PIIS, and meltwater outflows converge into the anticyclonic gyre with a deep-convex-downward thermocline. The double-gyre migrated eastward as the calving front retreated, placing the anticyclonic gyre over a shallow seafloor ridge, reducing the ocean heat input towards PIIS. Reconfigurations of meltwater-driven gyres associated with moving ice boundaries might be crucial in modulating ocean heat delivery to glacial ice.  more » « less
Award ID(s):
1738942
PAR ID:
10331770
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract West Antarctic ice-shelf thinning is primarily caused by ocean-driven basal melting. Here we assess ocean variability below Thwaites Eastern Ice Shelf (TEIS) and reveal the importance of local ocean circulation and sea-ice. Measurements obtained from two sub-ice-shelf moorings, spanning January 2020 to March 2021, show warming of the ice-shelf cavity and an increase in meltwater fraction of the upper sub-ice layer. Combined with ocean modelling results, our observations suggest that meltwater from Pine Island Ice Shelf feeds into the TEIS cavity, adding to horizontal heat transport there. We propose that a weakening of the Pine Island Bay gyre caused by prolonged sea-ice cover from April 2020 to March 2021 allowed meltwater-enriched waters to enter the TEIS cavity, which increased the temperature of the upper layer. Our study highlights the sensitivity of ocean circulation beneath ice shelves to local atmosphere-sea-ice-ocean forcing in neighbouring open oceans. 
    more » « less
  2. Abstract Marine-terminating glaciers lose mass through melting and iceberg calving, and we find that meltwater drainage systems influence calving timing at Helheim Glacier, a tidewater glacier in East Greenland. Meltwater feeds a buoyant subglacial discharge plume at the terminus of Helheim Glacier, which rises along the glacial front and surfaces through the mélange. Here, we use high-resolution satellite and time-lapse imagery to observe the surface expression of this meltwater plume and how plume timing and location compare with that of calving and supraglacial meltwater pooling from 2011 to 2019. The plume consistently appeared at the central terminus even as the glacier advanced and retreated, fed by a well-established channelized drainage system with connections to supraglacial water. All full-thickness calving episodes, both tabular and non-tabular, were separated from the surfacing plume by either time or by space. We hypothesize that variability in subglacial hydrology and basal coupling drive this inverse relationship between subglacial discharge plumes and full-thickness calving. Surfacing plumes likely indicate a low-pressure subglacial drainage system and grounded terminus, while full-thickness calving occurrence reflects a terminus at or close to flotation. Our records of plume appearance and full-thickness calving therefore represent proxies for the grounding state of Helheim Glacier through time. 
    more » « less
  3. The largest uncertainty in future sea-level rise is loss of ice from the Greenland and Antarctic Ice Sheets. Ice shelves, freely floating platforms of ice that fringe the ice sheets, play a crucial role in restraining discharge of grounded ice into the ocean through buttressing. However, since the 1990s, several ice shelves have thinned, retreated, and collapsed. If this pattern continues, it could expose thick cliffs that become structurally unstable and collapse in a process called marine ice cliff instability (MICI). However, the feedbacks between calving, retreat, and other forcings are not well understood. Here we review observed modes of calving from ice shelves and marine-terminating glaciers, and their relation to environmental forces. We show that the primary driver of calving is long-term internal glaciological stress, but as ice shelves thin they may become more vulnerable to environmental forcing. This vulnerability—and the potential for MICI—comes from a combination of the distribution of preexisting flaws within the ice and regions where the stress is large enough to initiate fracture. Although significant progress has been made modeling these processes, theories must now be tested against a wide range of environmental and glaciological conditions in both modern and paleo conditions. ▪ Ice shelves, floating platforms of ice fed by ice sheets, shed mass in a near-instantaneous fashion through iceberg calving. ▪ Most ice shelves exhibit a stable cycle of calving front advance and retreat that is insensitive to small changes in environmental conditions. ▪ Some ice shelves have retreated or collapsed completely, and in the future this could expose thick cliffs that could become structurally unstable called ice cliff instability. ▪ The potential for ice shelf and ice cliff instability is controlled by the presence and evolution of flaws or fractures within the ice. 
    more » « less
  4. Abstract The bathymetry under the Amery Ice Shelf steers the flow of ocean currents transporting ocean heat, and thus is a prerequisite for precise modeling of ice‐ocean interactions. However, hampered by thick ice, direct observations of sub‐ice‐shelf bathymetry are rare, limiting our ability to quantify the evolution of this sector and its future contribution to global mean sea level rise. We estimated the bathymetry of this region from airborne gravity anomaly using simulated annealing. Unlike the current model which shows a comparatively flat seafloor beneath the calving front, our estimation results reveal a 255‐m‐deep shoal at the western side and a 1,050‐m‐deep trough at the eastern side, which are important topographic features controlling the ocean heat transport into the sub‐ice cavity. The new model also reveals previously unknown depressions and sills that are critical to an improved modeling of the sub‐ice‐shelf ocean circulation and induced basal melting. 
    more » « less
  5. Abstract Determining the injection of glacial meltwater into polar oceans is crucial for quantifying the climate system response to ice sheet mass loss. However, meltwater is poorly observed and its pathways poorly known, especially in winter. Here we present winter meltwater distribution near Pine Island Glacier using data collected by tagged seals, revealing a highly variable meltwater distribution with two meltwater-rich layers in the upper 250 m and at around 450 m, connected by scattered meltwater-rich columns. We show that the hydrographic signature of meltwater is clearest in winter, when its presence can be unambiguously mapped. We argue that the buoyant meltwater provides near-surface heat that helps to maintain polynyas close to ice shelves. The meltwater feedback onto polynyas and air-sea heat fluxes demonstrates that although the processes determining the distribution of meltwater are small-scale, they are important to represent in Earth system models. 
    more » « less