skip to main content

Search for: All records

Award ID contains: 1738942

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Pine Island Ice Shelf (PIIS) buttresses the Pine Island Glacier, the key contributor to sea-level rise. PIIS has thinned owing to ocean-driven melting, and its calving front has retreated, leading to buttressing loss. PIIS melting depends primarily on the thermocline variability in its front. Furthermore, local ocean circulation shifts adjust heat transport within Pine Island Bay (PIB), yet oceanic processes underlying the ice front retreat remain unclear. Here, we report a PIB double-gyre that moves with the PIIS calving front and hypothesise that it controls ocean heat input towards PIIS. Glacial melt generates cyclonic and anticyclonic gyres near and off PIIS, and meltwater outflows converge into the anticyclonic gyre with a deep-convex-downward thermocline. The double-gyre migrated eastward as the calving front retreated, placing the anticyclonic gyre over a shallow seafloor ridge, reducing the ocean heat input towards PIIS. Reconfigurations of meltwater-driven gyres associated with moving ice boundaries might be crucial in modulating ocean heat delivery to glacial ice.
    Free, publicly-accessible full text available December 1, 2023
  2. Subglacial meltwater drainage can enhance localized melting along grounding zones and beneath the ice shelves of marine-terminating glaciers. Efforts to constrain the evolution of subglacial hydrology and the resulting influence on ice stability in space and on decadal to millennial timescales are lacking. Here, we apply sedimentological, geochemical, and statistical methods to analyze sediment cores recovered offshore Thwaites Glacier, West Antarctica to reconstruct meltwater drainage activity through the pre-satellite era. We find evidence for a long-lived subglacial hydrologic system beneath Thwaites Glacier and indications that meltwater plumes are the primary mechanism of sedimentation seaward of the glacier today. Detailed core stratigraphy revealed through computed tomography scanning captures variability in drainage styles and suggests greater magnitudes of sediment-laden meltwater have been delivered to the ocean in recent centuries compared to the past several thousand years. Fundamental similarities between meltwater plume deposits offshore Thwaites Glacier and those described in association with other Antarctic glacial systems imply widespread and similar subglacial hydrologic processes that occur independently of subglacial geology. In the context of Holocene changes to the Thwaites Glacier margin, it is likely that subglacial drainage enhanced submarine melt along the grounding zone and amplified ice-shelf melt driven by oceanic processes, consistent withmore »observations of other West Antarctic glaciers today. This study highlights the necessity of accounting for the influence of subglacial hydrology on grounding-zone and ice-shelf melt in projections of future behavior of the Thwaites Glacier ice margin and marine-based glaciers around the Antarctic continent.« less
    Free, publicly-accessible full text available May 31, 2023
  3. null (Ed.)
    Thwaites Glacier is the most rapidly changing outlet of the West Antarctic Ice Sheet and adds large uncertainty to 21st century sea-level rise predictions. Here, we present the first direct observations of ocean temperature, salinity, and oxygen beneath Thwaites Ice Shelf front, collected by an autonomous underwater vehicle. On the basis of these data, pathways and modification of water flowing into the cavity are identified. Deep water underneath the central ice shelf derives from a previously underestimated eastern branch of warm water entering the cavity from Pine Island Bay. Inflow of warm and outflow of melt-enriched waters are identified in two seafloor troughs to the north. Spatial property gradients highlight a previously unknown convergence zone in one trough, where different water masses meet and mix. Our observations show warm water impinging from all sides on pinning points critical to ice-shelf stability, a scenario that may lead to unpinning and retreat.
  4. Abstract. The geometry of the sea floor immediately beyondAntarctica's marine-terminating glaciers is a fundamental control onwarm-water routing, but it also describes former topographic pinning pointsthat have been important for ice-shelf buttressing. Unfortunately, thisinformation is often lacking due to the inaccessibility of these areas forsurvey, leading to modelled or interpolated bathymetries being used asboundary conditions in numerical modelling simulations. At Thwaites Glacier(TG) this critical data gap was addressed in 2019 during the first cruise ofthe International Thwaites Glacier Collaboration (ITGC) project. We present more than 2000 km2 of new multibeamecho-sounder (MBES) data acquired in exceptional sea-ice conditionsimmediately offshore TG, and we update existing bathymetric compilations.The cross-sectional areas of sea-floor troughs are under-predicted by up to40 % or are not resolved at all where MBES data are missing, suggesting thatcalculations of trough capacity, and thus oceanic heat flux, may besignificantly underestimated. Spatial variations in the morphology oftopographic highs, known to be former pinning points for the floating iceshelf of TG, indicate differences in bed composition that are supported bylandform evidence. We discuss links to ice dynamics for an overriding icemass including a potential positive feedback mechanism where erosion ofsoft erodible highs may lead to ice-shelf ungrounding even with littleor no ice thinning. Analyses ofmore »bed roughnesses and basal drag contributionsshow that the sea-floor bathymetry in front of TG is an analogue for extantbed areas. Ice flow over the sea-floor troughs and ridges would have beenaffected by similarly high basal drag to that acting at the grounding zonetoday. We conclude that more can certainly be gleaned from these 3Dbathymetric datasets regarding the likely spatial variability of bedroughness and bed composition types underneath TG. This work also addressesthe requirements of recent numerical ice-sheet and ocean modelling studiesthat have recognised the need for accurate and high-resolution bathymetry todetermine warm-water routing to the grounding zone and, ultimately, forpredicting glacier retreat behaviour.« less