Title: Verifying the Safety of Autonomous Systems with Neural Network Controllers
This article addresses the problem of verifying the safety of autonomous systems with neural network (NN) controllers. We focus on NNs with sigmoid/tanh activations and use the fact that the sigmoid/tanh is the solution to a quadratic differential equation. This allows us to convert the NN into an equivalent hybrid system and cast the problem as a hybrid system verification problem, which can be solved by existing tools. Furthermore, we improve the scalability of the proposed method by approximating the sigmoid with a Taylor series with worst-case error bounds. Finally, we provide an evaluation over four benchmarks, including comparisons with alternative approaches based on mixed integer linear programming as well as on star sets. more »« less
This paper presents Verisig 2.0, a verification tool for closed-loop systems with neural network (NN) controllers. We focus on NNs with tanh/sigmoid activations and develop a Taylor-model-based reachability algorithm through Taylor model preconditioning and shrink wrapping. Furthermore, we provide a parallelized implementation that allows Verisig 2.0 to efficiently handle larger NNs than existing tools can. We provide an extensive evaluation over 10 benchmarks and compare Verisig 2.0 against three state-of-the-art verification tools. We show that Verisig 2.0 is both more accurate and faster, achieving speed-ups of up to 21x and 268x against different tools, respectively.
This paper presents Verisig, a hybrid system approach to verifying safety properties of closed-loop systems using neural networks as controllers. We focus on sigmoid-based networks and exploit the fact that the sigmoid is the solution to a quadratic differential equation, which allows us to transform the neural network into an equivalent hybrid system. By composing the network's hybrid system with the plant's, we transform the problem into a hybrid system verification problem which can be solved using state-of-the-art reachability tools. We show that reachability is decidable for networks with one hidden layer and decidable for general networks if Schanuel's conjecture is true. We evaluate the applicability and scalability of Verisig in two case studies, one from reinforcement learning and one in which the neural network is used to approximate a model predictive controller.
Akter, Shahrin; Haider, Mohammad Rafiqul
(, Journal of Low Power Electronics and Applications)
Inkjet-printed circuits on flexible substrates are rapidly emerging as a key technology in flexible electronics, driven by their minimal fabrication process, cost-effectiveness, and environmental sustainability. Recent advancements in inkjet-printed devices and circuits have broadened their applications in both sensing and computing. Building on this progress, this work has developed a nonlinear computational element coined as mTanh to serve as an activation function in neural networks. Activation functions are essential in neural networks as they introduce nonlinearity, enabling machine learning models to capture complex patterns. However, widely used functions such as Tanh and sigmoid often suffer from the vanishing gradient problem, limiting the depth of neural networks. To address this, alternative functions like ReLU and Leaky ReLU have been explored, yet these also introduce challenges such as the dying ReLU issue, bias shifting, and noise sensitivity. The proposed mTanh activation function effectively mitigates the vanishing gradient problem, allowing for the development of deeper neural network architectures without compromising training efficiency. This study demonstrates the feasibility of mTanh as an activation function by integrating it into an Echo State Network to predict the Mackey–Glass time series signal. The results show that mTanh performs comparably to Tanh, ReLU, and Leaky ReLU in this task. Additionally, the vanishing gradient resistance of the mTanh function was evaluated by implementing it in a deep multi-layer perceptron model for Fashion MNIST image classification. The study indicates that mTanh enables the addition of 3–5 extra layers compared to Tanh and sigmoid, while exhibiting vanishing gradient resistance similar to ReLU. These results highlight the potential of mTanh as a promising activation function for deep learning models, particularly in flexible electronics applications.
Feng, Bo; Lou, Qian; Jiang, Lei; Fox, Geoffrey
(, Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing)
Homomorphic encryption (HE) and garbled circuit (GC) provide the protection for users’ privacy. However, simply mixing the HE and GC in RNN models suffer from long inference latency due to slow activation functions. In this paper, we present a novel hybrid structure of HE and GC gated recurrent unit (GRU) network, , for low-latency secure inferences. replaces computationally expensive GC-based tanh with fast GC-based ReLU, and then quantizes sigmoid and ReLU to smaller bit-length to accelerate activations in a GRU. We evaluate with multiple GRU models trained on 4 public datasets. Experimental results show achieves top-notch accuracy and improves the secure inference latency by up to 138× over one of the state-of-the-art secure networks on the Penn Treebank dataset.
This paper extends the star set reachability approach to verify the robustness of feed-forward neural networks (FNNs) with sigmoidal activation functions such as Sigmoid and TanH. The main drawbacks of the star set approach in Sigmoid/TanH FNN verification are scalability, feasibility, and optimality issues in some cases due to the linear programming solver usage. We overcome this challenge by proposing a relaxed star (RStar) with symbolic intervals, which allows the usage of the back-substitution technique in DeepPoly to find bounds when overapproximating activation functions while maintaining the valuable features of a star set. RStar can overapproximate a sigmoidal activation function using four linear constraints (RStar4) or two linear constraints (RStar2), or only the output bounds (RStar0). We implement our RStar reachability algorithms in NNV and compare them to DeepPoly via robustness verification of image classification DNNs benchmarks. The experimental results show that the original star approach (i.e., no relaxation) is the least conservative of all methods yet the slowest. RStar4 is computationally much faster than the original star method and is the second least conservative approach. It certifies up to 40% more images against adversarial attacks than DeepPoly and on average 51 times faster than the star set. Last but not least, RStar0 is the most conservative method, which could only verify two cases for the CIFAR10 small Sigmoid network,δ= 0.014. However, it is the fastest method that can verify neural networks up to 3528 times faster than the star set and up to 46 times faster than DeepPoly in our evaluation.
Ivanov, Radoslav, Carpenter, Taylor J., Weimer, James, Alur, Rajeev, Pappas, George J., and Lee, Insup. Verifying the Safety of Autonomous Systems with Neural Network Controllers. Retrieved from https://par.nsf.gov/biblio/10331772. ACM Transactions on Embedded Computing Systems 20.1 Web. doi:10.1145/3419742.
Ivanov, Radoslav, Carpenter, Taylor J., Weimer, James, Alur, Rajeev, Pappas, George J., & Lee, Insup. Verifying the Safety of Autonomous Systems with Neural Network Controllers. ACM Transactions on Embedded Computing Systems, 20 (1). Retrieved from https://par.nsf.gov/biblio/10331772. https://doi.org/10.1145/3419742
Ivanov, Radoslav, Carpenter, Taylor J., Weimer, James, Alur, Rajeev, Pappas, George J., and Lee, Insup.
"Verifying the Safety of Autonomous Systems with Neural Network Controllers". ACM Transactions on Embedded Computing Systems 20 (1). Country unknown/Code not available. https://doi.org/10.1145/3419742.https://par.nsf.gov/biblio/10331772.
@article{osti_10331772,
place = {Country unknown/Code not available},
title = {Verifying the Safety of Autonomous Systems with Neural Network Controllers},
url = {https://par.nsf.gov/biblio/10331772},
DOI = {10.1145/3419742},
abstractNote = {This article addresses the problem of verifying the safety of autonomous systems with neural network (NN) controllers. We focus on NNs with sigmoid/tanh activations and use the fact that the sigmoid/tanh is the solution to a quadratic differential equation. This allows us to convert the NN into an equivalent hybrid system and cast the problem as a hybrid system verification problem, which can be solved by existing tools. Furthermore, we improve the scalability of the proposed method by approximating the sigmoid with a Taylor series with worst-case error bounds. Finally, we provide an evaluation over four benchmarks, including comparisons with alternative approaches based on mixed integer linear programming as well as on star sets.},
journal = {ACM Transactions on Embedded Computing Systems},
volume = {20},
number = {1},
author = {Ivanov, Radoslav and Carpenter, Taylor J. and Weimer, James and Alur, Rajeev and Pappas, George J. and Lee, Insup},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.