skip to main content


Title: Estimating Precipitating Energy Flux, Average Energy, and Hall Auroral Conductance From THEMIS All-Sky-Imagers With Focus on Mesoscales
Recent attention has been given to mesoscale phenomena across geospace (∼10 s km to 500 km in the ionosphere or ∼0.5 R E to several R E in the magnetosphere), as their contributions to the system global response are important yet remain uncharacterized mostly due to limitations in data resolution and coverage as well as in computational power. As data and models improve, it becomes increasingly valuable to advance understanding of the role of mesoscale phenomena contributions—specifically, in magnetosphere-ionosphere coupling. This paper describes a new method that utilizes the 2D array of Time History of Events and Macroscale Interactions during Substorms (THEMIS) white-light all-sky-imagers (ASI), in conjunction with meridian scanning photometers, to estimate the auroral scale sizes of intense precipitating energy fluxes and the associated Hall conductances. As an example of the technique, we investigated the role of precipitated energy flux and average energy on mesoscales as contrasted to large-scales for two back-to-back substorms, finding that mesoscale aurora contributes up to ∼80% (∼60%) of the total energy flux immediately after onset during the early expansion phase of the first (second) substorm, and continues to contribute ∼30–55% throughout the remainder of the substorm. The average energy estimated from the ASI mosaic field of view also peaked during the initial expansion phase. Using the measured energy flux and tables produced from the Boltzmann Three Constituent (B3C) auroral transport code (Strickland et al., 1976; 1993), we also estimated the 2D Hall conductance and compared it to Poker Flat Incoherent Scatter Radar conductance values, finding good agreement for both discrete and diffuse aurora.  more » « less
Award ID(s):
1907698
NSF-PAR ID:
10331778
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Physics
Volume:
9
ISSN:
2296-424X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The extreme substorm event on 5 April 2010 (THEMIS AL = −2,700 nT, called supersubstorm) was investigated to examine its driving processes, the aurora current system responsible for the supersubstorm, and the magnetosphere‐ionosphere‐thermosphere (M‐I‐T) responses. An interplanetary shock created shock aurora, but the shock was not a direct driver of the supersubstorm onset. Instead, the shock with a large southward IMF strengthened the growth phase with substantially larger ionosphere currents, more rapid equatorward motion of the auroral oval, larger ionosphere conductance, and more elevated magnetotail pressure than those for the growth phase of classical substorms. The auroral brightening at the supersubstorm onset was small, but the expansion phase had multistep enhancements of unusually large auroral brightenings and electrojets. The largest activity was an extremely large poleward boundary intensification (PBI) and subsequent auroral streamer, which started ~20 min after the substorm auroral onset during a steady southward IMFBzand elevated dynamic pressure. Those were associated with a substorm current wedge (SCW), plasma sheet flow, relativistic particle injection and precipitation down to the D‐region, total electron content (TEC), conductance, and neutral wind in the thermosphere, all of which were unusually large compared to classical substorms. The SCW did not extend over the entire nightside auroral activity but was localized azimuthally to a few 100 km in the ionosphere around the PBI and streamer. These results reveal the importance of localized magnetotail reconnection for releasing large energy accumulation that can affect geosynchronous satellites and produce the extreme M‐I‐T responses.

     
    more » « less
  2. Abstract

    Energetic particles of magnetospheric origin constantly strike the Earth’s upper atmosphere in the polar regions, producing optical emissions known as the aurora. The most spectacular auroral displays are associated with recurrent events called magnetospheric substorms (aka auroral substorms). Substorms are initiated in the nightside magnetosphere on closed magnetic field lines. As a consequence, it is generally thought that auroral substorms should occur in both hemispheres on the same field line (i.e., magnetically conjugated). However, such a hypothesis has not been verified statistically. Here, by analyzing 2659 auroral substorms acquired by the Ultraviolet Imager on board the NASA satellite “Polar”, we have discovered surprising evidence that the averaged location for substorm onsets is not conjugate but shows a geographic preference that cannot be easily explained by current substorm theories. In the Northern Hemisphere (NH) the auroral substorms occur most frequently in Churchill, Canada (~90°W) and Khatanga, Siberia (~100°E), up to three times as often as in Iceland (~22°W). In the Southern Hemisphere (SH), substorms occur more frequently over a location in the Antarctic ocean (~120°E), up to ~4 times more than over the Antarctic Continent. Such a large difference in the longitudinal distribution of north and south onset defies the common belief that substorms in the NH and SH should be magnetically conjugated. A further analysis indicates that these substorm events occurred more frequently when more of the ionosphere was dark. These geographic areas also coincide with regions where the Earth’s magnetic field is largest. These facts suggest that auroral substorms occur more frequently, and perhaps more intensely, when the ionospheric conductivity is lower. With much of the magnetotail energy coming from the solar wind through merging of the interplanetary and Earth’s magnetic field, it is generally thought that the occurrence of substorms is externally controlled by the solar wind and plasma instability in the magnetotail. The present study results provide a strong argument that the ionosphere plays a more active role in the occurrence of substorms.

     
    more » « less
  3. Abstract

    Techniques developed in the past few years enable the derivation of high‐resolution regional ion convection and particle precipitation patterns from the Super Dual Auroral Radar Network (SuperDARN) and Time History of Events and Macroscale Interactions during Substorms All‐Sky Imager (ASI) observations, respectively. For the first time in this study, a global ionosphere‐thermosphere model (GITM) is driven by such high‐resolution patterns to simulate the I‐T response to the multi‐scale geomagnetic forcing during a real event. Specifically, GITM simulations have been conducted for the 26 March 2014 event with different ways to specify the high‐latitude forcing, including empirical models, high‐resolution SuperDARN convection patterns, and high‐resolution ASI particle precipitation maps. Multi‐scale ion convection forcing estimated from high‐resolution SuperDARN observations is found to have a very strong meso‐scale component. Multi‐scale convection forcing increases the regional Joule heating (integrated over the high‐resolution SuperDARN observation domain) by ∼30% on average, which is mostly contributed by the meso‐scale component. Meso‐scale electron precipitation derived from ASI measurements contributes on average about 30% to the total electron energy flux, and its impact on the I‐T system is comparable to the meso‐scale convection forcing estimated from SuperDARN observations. Both meso‐scale convection and precipitation forcing are found to enhance ionospheric and thermospheric disturbances with prominent structures and magnitudes of a few tens of meters per second in the horizontal neutral winds at 270 km and a few percent in the neutral density at 400 km through comparisons between simulations driven by the original and smoothed high‐resolution forcing patterns.

     
    more » « less
  4. Abstract

    To understand magnetosphere‐ionosphere conditions that result in thermal emission velocity enhancement (STEVE) and subauroral ion drifts (SAID) during the substorm recovery phase, we present substorm aurora, particle injection, and current systems during two STEVE events. Those events are compared to substorm events with similar strength but without STEVE. We found that the substorm surge and intense upward currents for the events with STEVE reach the dusk, while those for the non‐STEVE substorms are localized around midnight. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations show that location of particle injection and fast plasma sheet flows for the STEVE events also shifts duskward. Electron injection is stronger and ion injection is weaker for the STEVE events compared to the non‐STEVE events. SAID are measured by Super Dual Auroral Radar Network during the STEVE events, but the non‐STEVE events only showed latitudinally wide subauroral polarization streams without SAID. To interpret the observations, Rice Convection Model (RCM) simulations with injection at premidnight and midnight have been conducted. The simulations successfully explain the stronger electron injection, weaker ion injection, and formation of SAID for injection at premidnight, because injected electrons reach the premidnight inner magnetosphere and form a narrower separation between the ion and electron inner boundaries. We suggest that substorms and particle injections extending far duskward away from midnight offer a condition for creating STEVE and SAID due to stronger electron injection to premidnight. The THEMIS all‐sky imager network identified the east‐west length of the STEVE arc to be ~1900 km (~2.5 h magnetic local time) and the duration to be 1–1.5 h.

     
    more » « less
  5. Abstract

    The poleward boundary intensification (PBI) is a common appearance at the poleward boundary of the auroral bulge and auroral oval. The PBI presented here occurred during the expansion phase of a small substorm with an auroral surge power of 6.5 GW. The auroral power of the PBI (1.1 GW) was ~17% of this value. The largest powers above the nominal auroral acceleration region at 5 REgeocentric were carried by Alfvén waves (1.7 GW) and Alfvénic electrons (0.7 GW), sufficient to account for the conjugate PBI auroral power. In contrast, the conjugate quasistatic, field‐aligned current power (<0.3 GW) was not sufficient. Observed correlation between quasiperiodic Alfvénic pulses and auroral modulations strengthens our conclusion that the electromagnetic magnetosphere‐ionosphere coupling of the PBI was dominantly Alfvénic, as opposed to electrostatic, thus causing Alfvénic aurora.

     
    more » « less