skip to main content

Search for: All records

Award ID contains: 1907698

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present observations during two substorms using simultaneous Time History of Events and Macroscale Interactions During Substorms satellites and all‐sky imagers to determine plasma sheet dynamics associated with substorm auroral onset beads. The multi‐satellite observations showed that the cross‐tail current decreased and the field‐aligned currents increased at the substorm auroral onset, indicating that the satellites detected an initiation of the currents being deflected to the ionosphere. For duskward‐propagating beads, the electric field was tailward, and ions were accumulated closer to the Earth than electrons. The mapped bead propagation speed was close to energetic ion drift speed. Theand electron drift speeds increased duskward and reduced the cross‐tail current at the onset. For dawnward‐propagating beads, the electric field was equatorward/earthward, and electrons were inferred to accumulate earthward of ions. The mapped bead propagation speed was comparable to the dawnwardand electron drift speeds. The duskward ion drift and tail current were reduced, and electrons became the dominant current carrier. We suggest that the plasma species that is responsible for the bead propagation changes with the electric field configuration and that the tail current reduction by the enhanceddrift at onset destabilizes the plasma sheet. Ion and electron outflows substantially increased low‐energy plasma density and may have increased the role ofdrifts. The bead wavelength was comparable to ion gyroradius and thus ion kinetic effects are important for determining the wavelength. In the dawnward‐propagating event, the mode of oscillation in the plasma sheet was suggested to be the sausage‐mode flapping oscillations.

    more » « less
  2. Abstract

    Pc5 ultralow frequency waves are important for transferring energy between the magnetosphere and ionosphere. While many observations have been performed on Pc5 waves properties, it has been difficult to determine the source region, signal propagation path, and the two‐dimensional structure of Pc5 waves beyond coverage by a small number of satellites. Pc5 waves often show a dawn‐dusk asymmetry, but the cause of the asymmetry is under debate. To address these issues, we used conjunction events between the THEMIS satellites and all‐sky imagers and analyzed two Pc5 wave events that were stronger on the dawnside. For both events, the Pc5 waves propagated from dawnside magnetopause toward the nightside magnetosphere. The Pc5 waves were also associated with dawnside magnetopause surface waves, which were probably induced by the Kelvin‐Helmholtz instability. The ionospheric equivalent currents identified multiple vortices on the dawnside associated with quasi‐periodic auroral arcs and much weaker perturbations on the duskside. Global auroral imaging also presented a similar dawn‐dusk asymmetry with multiple arcs on the dawnside, while only one or two major arcs existed on the duskside. Pc5 waves in the magnetosphere had an anti‐phase relation between the total magnetic field and thermal pressure, with a slower propagation velocity compared with magnetohydrodynamic waves. The Poynting flux was anti‐sunward with an oscillating field‐aligned component. These properties suggest that Pc5 waves were slow or drift mirror mode waves coupled with standing Alfven waves. The ground‐based and multi‐satellite observations provide crucial information for determining the Pc5 waves properties, possible source region, and signal propagation path.

    more » « less
  3. Abstract

    During the 17 March 2015 geomagnetic storm, citizen scientist observations from Dunedin (45.95°S, 170.32°E), New Zealand, revealed a bright wide red arc known as stable auroral red (SAR) arc evolving into a thin white‐mauve arc, known as Strong Thermal Emission Velocity Enhancement (STEVE). An all‐sky imager at the Mount John Observatory (43.99°S, 170.46°E), 200 km north of Dunedin, detected an extremely bright arc in 630.0 nm, with a peak of ∼6 kR, colocated with the arc measured at Dunedin at an assumed height of 425 km. Swarm satellite data measured plasma parameters that showed strong subauroral ion drift signatures when the SAR arc was observed. These conditions intensified to extremely high values in a thinner channel when STEVE was present. Our results highlight the fast evolution of plasma properties and their effects on optical emissions. Current theories and models are unable to reproduce or explain these observations.

    more » « less
  4. Abstract

    Inner‐magnetospheric conditions for subauroral polarization streams (SAPS) and subauroral ion drifts (SAID) have been investigated statistically using Time History of Events and Macroscale Interactions during Substorms and RBSP observations. We found that plasma sheet electron fluxes at its earthward edge are larger for SAID than SAPS. The ring current ion flux for SAID formed a local maximum near SAID, but the ion flux for SAID was not necessarily larger than for SAPS. The median potential drop across SAID and SAPS is nearly the same, but the potential drop for intense SAID is substantially larger than that for SAPS. The plasmapause is sharper and electromagnetic waves were more intense for SAID. The SAID velocity peak does not strongly correlate with solar wind or geomagnetic indices. These results indicate that local plasma structures are more important for SAPS/SAID velocity characteristics as compared to global magnetospheric conditions.

    more » « less
  5. Abstract

    We utilized citizen scientist photographs of subauroral emissions in the upper atmosphere and identified a repeatable sequence of proton aurora and subauroral red (SAR) arc during substorms. The sequence started with a pair of green diffuse emissions and a red arc that drifted equatorward during the substorm expansion phase. Simultaneous spectrograph and satellite observations showed that they were subauroral proton aurora, where ion precipitation created secondary electrons that illuminated aurora in green and red colors. The ray structures in the red arc also indicated existence of low‐energy electron precipitation. The green diffuse aurora then decayed but the red arc (SAR arc) continued to move equatorward during the substorm recovery phase. This sequence suggests that the SAR arc was first generated by secondary electrons associated with ion precipitation and may then transition to heat flux or Joule heating. Proton aurora provides observational evidence that ion injection to the inner magnetosphere is the energy source for the initiation of the SAR arc.

    more » « less
  6. Abstract

    Auroral observations were first to identify the substorm, and later used to propose that substorm onset is triggered in the inner plasma sheet (equatorward portion of the auroral oval) by an intrusion of low entropy plasma comprising plasma sheet flow channels. Longitudinal localization makes the intruding flow channels difficult to observe with spacecraft. However, they are detectable in the ionosphere via the broader, two‐dimensional coverage by radars. Line‐of‐sight radar flow measurements have provided considerable support for the onset proposal. Here we use two‐dimensional, ionospheric flow maps for further testing. Since these maps are derived without the smoothing from global fits typically used for global convection maps, their spatial resolution is significantly improved, allowing representation of localized spatial structures. These maps show channels of enhanced ionospheric flow intruding to the time and location of substorm onset. We also see evidence that these intruding flows enter the plasma sheet from the polar cap, and that azimuthal spread of the reduced entropy plasma in the inner plasma sheet contributes to azimuthal onset spreading after initial onset. Identified events with appropriate radar data remain limited, but we have found no exceptions to consistency with flow channel triggering. Thus, these analyses strongly support the proposal that substorm onset is due to the intrusion of new plasma to the onset region. The lower entropy of the new plasma likely changes the entropy distribution of inner plasma sheet, a change possibly important for the substorm onset instability seen via the growing waves that demarcate substorm auroral onset.

    more » « less
  7. Abstract

    Meso‐scale plasma convection and particle precipitation could be significant momentum and energy sources for the ionosphere‐thermosphere (I‐T) system. Following our previous work on the I‐T response to a typical midnight flow burst, flow bursts with different characteristics (lifetime, size, and speed) have been examined systematically with Global Ionosphere‐Thermosphere Model (GITM) simulations in this study. Differences between simulations with and without additional flow bursts are used to illustrate the impact of flow bursts on the I‐T system. The neutral density perturbation due to a flow burst increases with the lifetime, size, and flow speed of the flow burst. It was found that the neutral density perturbation is most sensitive to the size of a flow burst, increasing from ∼0.3% to ∼1.3% when the size changes from 80 to 200 km. A westward‐eastward asymmetry has been identified in neutral density, wind, and temperature perturbations, which may be due to the changing of the forcing location in geographic coordinates and the asymmetrical background state of the I‐T system. In addition to midnight flow bursts, simulations with flow bursts centered at noon, dawn, and dusk have also been carried out. A flow burst centered at noon (12.0 Local Time [LT], 73°N) produces the weakest perturbation, and a flow burst centered at dusk (18.0 LT, 71°N) produces the strongest. Single‐cell and two‐cell flow bursts induce very similar neutral density perturbation patterns.

    more » « less
  8. Abstract

    Evolution of large‐scale and fine‐scale plasmaspheric plume density structures was examined using space‐ground coordinated observations of a plume during the 7–8 September 2015 storm. The large‐scale plasmaspheric plume density at Van Allen Probes A was roughly proportional to the total electron content (TEC) along the satellite footprint, indicating that TEC distribution represents the large‐scale plume density distribution in the magnetosphere. The plasmaspheric plume contained fine‐scale density structures and subauroral polarization streams (SAPS) velocity fluctuations. High‐resolution TEC data support the interpretation that the fine‐scale plume structures were blobs with ∼300 km size and ∼500–800 m/s in the ionosphere (∼3,000 km size and ∼5–8 km/s speed in the magnetosphere), emerging at the plume base and drifting to the plume. The short‐baseline Global Navigation Satellite System receivers detected smaller‐scale (∼10 km in the ionosphere, ∼100 km in the magnetosphere) TEC gradients and their sunward drift. Fine‐scale density structures were associated with enhanced phase scintillation index. Velocity fluctuations were found to be spatial structures of fine‐scale SAPS flows that drifted sunward with density irregularities down to ∼10 s of meter‐scale. Fine‐scale density structures followed a power law with a slope of ∼−5/3, and smaller‐scale density structures developed slower than the larger‐scale structures. We suggest that turbulent SAPS flows created fine‐scale density structures and their cascading to smaller scales. We also found that the plume fine‐scale density structures were associated with whistler‐mode intensity modulation, and localized electron precipitation in the plume. Structured precipitation in the plume may contribute to ionospheric heating, SAPS velocity reduction, and conductance enhancements.

    more » « less
  9. Abstract

    Using the University Navstar Consortium (UNAVCO) Global Positioning System (GPS) receiver network in North America, we present 2‐D distributions of GPS radio signal scintillation in the mid‐latitude ionosphere during the 7–8 September 2017 storm. The mid‐latitude ionosphere showed a variety of density structures such as the storm enhanced density (SED) base and plume, main trough, secondary plume, and secondary trough during the storm main and early recovery phases. Enhanced phase and amplitude scintillation indices were observed at the density gradients of those structures. SuperDARN radar echoes were also enhanced at the density gradients. The collocation of the scintillation and HF radar echoes indicates that density irregularities developed across a wide range of wavelengths (tens of meters to tens of kilometers) in the mid‐latitude density structures. The density gradients and irregularities were also detected by Swarm and DMSP as in‐situ density structures that disturbed the GPS signals. The irregularities were a substantial fraction (∼10%–50%) of the background density. The density irregularity had a power law spectrum with slope of ∼ −1.8, suggesting that gradient drift instability (GDI) contributed to turbulence formation. Both high‐latitude and low‐latitude processes likely contributed to forming the mid‐latitude density structures, and the mid‐latitude scintillation occurred at the interface of high‐latitude and low‐latitude forcing.

    more » « less
  10. Abstract

    We examined the source region of dayside large‐scale traveling ionospheric disturbances (LSTIDs) and their relation to cusp energy input. Aurora and total electron content (TEC) observations show that LSTIDs propagate equatorward away from the cusp and demonstrate the cusp region as the source region. Enhanced energy input to the cusp initiated by interplanetary magnetic field (IMF) southward turning triggers the LSTIDs, and each LSTID oscillation is correlated with a TEC enhancement in the dayside oval with tens of minutes periodicity. Equatorward‐propagating LSTIDs are likely gravity waves caused by repetitive heating in the cusp. The cusp source can explain the high LSTID occurrence on the dayside during geomagnetically active times. Poleward‐propagating ΔTEC patterns in the polar cap propagate nearly at the convection speed. While they have similar ΔTEC signatures to gravity wave‐driven LSTIDs, they are suggested to be weak polar cap patches quasiperiodically drifting from the cusp into the polar cap via dayside reconnection.

    more » « less