This study examines the phenomenon of backward transfer in the context of high school students learning and reasoning about linear and quadratic functions. Using quantitative methods, this study provides statistical evidence that it is possible to produce intended productive backward transfer effects on students’ prior ways of reasoning about linear functions with quadratic functions instruction that emphasizes quantitative and covariational reasoning. Using qualitative methods, this study characterizes the quality of the backward transfer effects on students’ quantitative and covariational reasoning. The significance of these results is that if intended productive backward transfer is possible, then it represents a new way for mathematics education to be improved.
more »
« less
Backward transfer, the relationship between new learning and prior ways of reasoning, and action versus process views of linear functions
Backward transfer is defined as the influence that new learning has on individuals’ prior ways of reasoning. In this article, we report on an exploratory study that examined the influences that quadratic functions instruction in real classrooms had on students’ prior ways of reasoning about linear functions. Two algebra classes and their teachers at two comprehensive high schools served as the participants. Both schools drew from lowsocioeconomic urban populations. The study involved paper-and-pencil assessments about linear functions that were administered before and after a four- to five-week instructional unit on quadratic functions. The teachers were instructed to teach the quadratic functions unit using their regular approach. Qualitative analysis revealed three kinds of backward transfer influences and each influence was related to a shift in how the students reasoned about functions in terms of an action or process view of functions. Additionally, features of the instruction in each class provided plausible explanations for the similarities and differences in backward transfer effects across the two classrooms. These results offer insights into backward transfer, the relationship between prior knowledge and new learning, aspects of reasoning about linear functions, and instructional approaches to teaching functions.
more »
« less
- Award ID(s):
- 1651571
- PAR ID:
- 10331811
- Date Published:
- Journal Name:
- Mathematical Thinking and Learning
- ISSN:
- 1098-6065
- Page Range / eLocation ID:
- 1 to 19
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study was conducted to gain understanding about potential influences that learning about quadratic functions has on high school algebra students’ action versus process views of linear functions. Pre/post linear functions tests were given to two classrooms of Algebra II students (N=57) immediately before and immediately after they participated in a multi-day unit on quadratic functions. The purpose was to identify ways that their views of linear functions had changed. Results showed that on some measures, students across both classes shifted their views of linear functions similarly. However, on other measures, the results were different across the classes. These findings suggest that learning about quadratic functions can influence students’ action or process views of linear. Furthermore, the instructional differences between classes provide insights into how to promote those influences that are productive for students’ views.more » « less
-
This experience report describes an approach for helping elementary schools integrate computational thinking and coding by leveraging existing resources and infrastructure that do not rely on 1-1 computing. A particular focus is using the school library and media center as a site to complement and enhance classroom instruction on coding. Further, our approach builds upon "unplugged" knowledge and practices that are already familiar to and motivating for students, in this case tabletop board games. Through these games, students can use their prior knowledge and ease with tabletop gaming mechanics to cue relevant ideas for core computational concepts. We describe a model and an instructional unit spanning across classroom and school library settings that builds upon board game play as a source domain for computing knowledge. Building on expansive framing, the model emphasizes instructional linkages being made between one domain (the tabletop board game) and another (specially designed Scratch project shells with partially complete code blocks) such that the reasoning activities and different contexts are seen as instantiations of the same encompassing context. We present the experiences of three elementary school teachers as they implemented the unit in their classrooms and with their school librarian. We also show initial findings on the impact of the unit on student interest (N=87), as measured by pre- and post- surveys. We conclude with lessons learned about ways to improve the unit and future classroom implementations.more » « less
-
IntroductionElementary teachers face many challenges when including reform-based science instruction in their classrooms, and some teachers have chosen to enhance their science instruction by introducing students to citizen science (CS) projects. When CS projects are incorporated in formal school settings, students have an opportunity to engage in real-world projects as they collect and make sense of data, yet relatively few CS projects offer substantial guidance for teachers seeking to implement the projects, placing a heavy burden on teacher learning. MethodsFramed in theory on teacher relationships with curricula, we prepared science standards-aligned educative support materials for two CS projects. We present convergent mixed methods research that examines two teachers’ contrasting approaches to including school-based citizen science (SBCS) in their fifth-grade classrooms, each using support materials for one of the two CS projects. Both are veteran teachers at under-resourced Title 1 (an indicator of the high percentage of the students identified as economically disadvantaged) rural schools in the southeastern United States. We document the teachers’ interpretations and use of SBCS materials for the CS projects with data from classroom observations, instructional logs, teacher interviews, and student focus groups. ResultsOne teacher adapted the materials to include scaffolding to position students for success in data collection and analysis. In contrast, the second teacher adapted the SBCS support materials to maintain a teacher-centered approach to instruction, identifying perceptions of students’ limited abilities and limited instructional time as constraining factors. DiscussionWe discuss the intersection of CS projects in formal education and opportunities for engaging students in authentic science data collection, analysis, and sense-making. The two teachers’ stories identify the influences of school context and the need for teacher support to encourage elementary teachers’ use of SBCS instruction to supplement their science instruction.more » « less
-
This design-based research takes advantage of advanced technologies to support teachers to rapidly respond to evidence about student ideas generated in their classrooms. Leveraging advances in natural language processing methods, the Teacher Action Planner (TAP) analyzes students’ written explanations embedded in web-based inquiry projects to provide teachers with a report on student progress in developing the three-dimensional understanding called for by the Next Generation Science Standards. Based on the pattern in student scores, the TAP recommends research-based ways for teachers to customize instruction. This study examines how ten middle school teachers in 4 schools used the analysis of student ideas and suggestions for instructional customization presented in the TAP. This paper reports on how well their implemented customizations addressed student learning needs. It concludes with a discussion of the implications of the findings for redesign of the TAP.more » « less