skip to main content


Title: Seed banks alter metacommunity diversity: The interactive effects of competition, dispersal and dormancy
Abstract

Dispersal and dormancy are two common strategies allowing for species persistence and the maintenance of biodiversity in variable environments. However, theory and empirical tests of spatial diversity patterns tend to examine either mechanism in isolation. Here, we developed a stochastic, spatially explicit metacommunity model incorporating seed banks with varying germination and survival rates. We found that dormancy and dispersal had interactive, nonlinear effects on the maintenance and distribution of metacommunity diversity. Seed banks promoted local diversity when seed survival was high and maintained regional diversity through interactions with dispersal. The benefits of seed banks for regional diversity were largest when dispersal was high or intermediate, depending on whether local competition was equal or stabilising. Our study shows that classic predictions for how dispersal affects metacommunity diversity can be strongly influenced by dormancy. Together, these results emphasise the need to consider both temporal and spatial processes when predicting multi‐scale patterns of diversity.

 
more » « less
Award ID(s):
2019528
NSF-PAR ID:
10419560
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
25
Issue:
4
ISSN:
1461-023X
Page Range / eLocation ID:
p. 740-753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coexisting species often exhibit negative frequency dependence due to mechanisms that promote population growth and persistence when rare. These stabilising mechanisms can maintain diversity through interspecific niche differences, but also through life‐history strategies like dormancy that buffer populations in fluctuating environments. However, there are few tests demonstrating how seed banks contribute to long‐term community dynamics and the maintenance of diversity. Using a multi‐year, high‐frequency time series of bacterial community data from a north temperate lake, we documented patterns consistent with stabilising coexistence. Bacterial taxa exhibited differential responses to seasonal environmental conditions, while seed bank dynamics helped maintain diversity over less‐favourable winter periods. Strong negative frequency dependence in rare, but metabolically active, taxa suggested a role for biotic interactions in promoting coexistence. Together, our results provide field‐based evidence that niche differences and seed banks contribute to recurring community dynamics and the long‐term maintenance of diversity in nature.

     
    more » « less
  2. Abstract

    Metacommunity theory predicts that the relative importance of regional and local processes structuring communities will change over ecological succession. Determining effects of these processes on taxonomic and evolutionary diversity in spatially structured freshwater habitats of different successional stages may greatly improve understanding of the maintenance of diversity across temporal and spatial scales. In this study, we evaluated crayfish diversity at local and regional scales in pond metacommunities undergoing secondary succession from beaver (Castor canadensis) disturbance. Following theoretical predictions from metacommunity ecology of the increasing importance of local processes over succession, we hypothesised a decline in crayfish local and β diversity over succession from stronger local structuring as the older ponds may provide less suitable habitat than streams.

    Crayfish species and phylogenetic diversity were evaluated in beaver pond metacommunities and reference headwater streams located in three catchment regions. DNA sequences from the mitochondrial cytochrome oxidase I gene were used to assign crayfish to species for community and phylogenetic diversity tests. Local and β diversity were contrasted across beaver ponds ranging in age from 24 to 70 years and as a function of metacommunity processes.

    Counter to predictions, local species diversity among streams and the successional stages of ponds categorised by age class (24–39 years; 42–57 years; 60–70 years) did not differ, but community and phylogenetic convergence occurred in the oldest pond ecosystems. Crayfish community composition differed between the youngest and oldest ponds, resulting from higher abundance in the youngest ponds and community convergence in the oldest ponds. The association between community composition and the environment was strongest in streams and decoupled with pond age. In contrast, the correlation between intraspecific haplotype composition and the environment increased over succession. Among the three metacommunities, the regional crayfish species diversity arose from a combination of the temporal and environmental drivers from beaver‐constructed ecosystems and dispersal limitation within catchments.

    This study represents the first investigation of the taxonomic and phylogenetic diversity response to the successional stages of beaver pond metacommunities. The detection of differential crayfish composition and haplotype sorting to pond age suggests a role for local structuring and further indicates that future studies should acknowledge succession in shaping species diversity at local and regional scales. Dispersal limitation within catchment regions probably contributes to the evolution of crayfish species diversity in metacommunities and the overall maintenance of biodiversity.

    The results support a transition in community and freshwater ecology from a recent emphasis on spatial processes towards the integration of temporal drivers to better identify regulators of taxonomic and phylogenetic diversity across scales.

     
    more » « less
  3. Abstract

    Whether cities are more or less diverse than surrounding environments, and the extent to which non‐native species in cities impact regional species pools, remain two fundamental yet unanswered questions in urban ecology. Here we offer a unifying framework for understanding the mechanisms that generate biodiversity patterns across taxonomic groups and spatial scales in urban systems. One commonality between existing frameworks is the collective recognition that species co‐occurrence locally is not simply a function of natural colonization and extinction processes. Instead, it is largely a consequence of human actions that are governed by a myriad of social processes occurring across groups, institutions, and stakeholders. Rather than challenging these frameworks, we expand upon them to explicitly consider how human and non‐human mechanisms interact to control urban biodiversity and influence species composition over space and time. We present a comprehensive theory of the processes that drive biodiversity within cities, between cities and surrounding non‐urbanized areas and across cities, using the general perspective of metacommunity ecology. Armed with this approach, we embrace the fact that humans substantially influence β‐diversity by creating a variety of different habitats in urban areas, and by influencing dispersal processes and rates, and suggest ways how these influences can be accommodated to existing metacommunity paradigms. Since patterns in urban biodiversity have been extensively described at the local or regional scale, we argue that the basic premises of the theory can be validated by studying the β‐diversity across spatial scales within and across urban areas. By explicitly integrating the myriad of processes that drive native and non‐native urban species co‐occurrence, the proposed theory not only helps reconcile contrasting views on whether urban ecosystems are biodiversity hotspots or biodiversity sinks, but also provides a mechanistic understanding to better predict when and why alternative biodiversity patterns might emerge.

     
    more » « less
  4. Abstract

    Dormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites. Here we test the hypothesis that, by generating a seed bank of protected individuals, dormancy can modify the patterns and processes of antagonistic coevolution. We conducted a factorially designed experiment where we passaged a bacterial host (Bacillus subtilis) and its phage (SPO1) in the presence versus absence of a seed bank consisting of dormant endospores. Owing in part to the inability of phages to attach to spores, seed banks stabilized population dynamics and resulted in minimum host densities that were 30-fold higher compared to bacteria that were unable to engage in dormancy. By supplying a refuge to phage-sensitive strains, we show that seed banks retained phenotypic diversity that was otherwise lost to selection. Dormancy also stored genetic diversity. After characterizing allelic variation with pooled population sequencing, we found that seed banks retained twice as many host genes with mutations, whether phages were present or not. Based on mutational trajectories over the course of the experiment, we demonstrate that seed banks can dampen bacteria-phage coevolution. Not only does dormancy create structure and memory that buffers populations against environmental fluctuations, it also modifies species interactions in ways that can feed back onto the eco-evolutionary dynamics of microbial communities.

     
    more » « less
  5. Abstract

    Despite the well known scale‐dependency of ecological interactions, relatively little attention has been paid to understanding the dynamic interplay between various spatial scales. This is especially notable in metacommunity theory, where births and deaths dominate dynamics within patches (the local scale), and dispersal and environmental stochasticity dominate dynamics between patches (the regional scale). By considering the interplay of local and regional scales in metacommunities, the fundamental processes of community ecology—selection, drift, and dispersal—can be unified into a single theoretical framework. Here, we analyze three related spatial models that build on the classic two‐species Lotka–Volterra competition model. Two open‐system models focus on a single patch coupled to a larger fixed landscape by dispersal. The first is deterministic, while the second adds demographic stochasticity to allow ecological drift. Finally, the third model is a true metacommunity model with dispersal between a large number of local patches, which allows feedback between local and regional scales and captures the well studied metacommunity paradigms as special cases. Unlike previous simulation models, our metacommunity model allows the numerical calculation of equilibria and invasion criteria to precisely determine the outcome of competition at the regional scale. We show that both dispersal and stochasticity can lead to regional outcomes that are different than predicted by the classic Lotka–Volterra competition model. Regional exclusion can occur when the nonspatial model predicts coexistence or founder control, due to ecological drift or asymmetric stochastic switching between basins of attraction, respectively. Regional coexistence can result from local coexistence mechanisms or through competition‐colonization or successional‐niche trade‐offs. Larger dispersal rates are typically competitively advantageous, except in the case of local founder control, which can favor intermediate dispersal rates. Broadly, our models demonstrate the importance of feedback between local and regional scales in competitive metacommunities and provide a unifying framework for understanding how selection, drift, and dispersal jointly shape ecological communities.

     
    more » « less