Abstract The hafnate perovskites PbHfO3(antiferroelectric) and SrHfO3(“potential” ferroelectric) are studied as epitaxial thin films on SrTiO3(001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1−xSrxHfO3system. The resulting (240)‐oriented PbHfO3(Pba2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm−2at 1.6 MV cm−1, weak‐field dielectric constant ≈186 at 298 K, and an antiferroelectric‐to‐paraelectric phase transition at ≈518 K. (002)‐oriented SrHfO3films exhibited neither ferroelectric behavior nor evidence of a polarP4mmphase . Instead, the SrHfO3films exhibited a weak‐field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77–623 K) and electric field (–3 to 3 MV cm−1). While the lack of ferroelectric order in SrHfO3removes the potential for MPB, structural and property evolution of the Pb1−xSrxHfO3(0 ≤x < 1) system is explored. Strontium alloying increased the electric‐breakdown strength (EB) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (Ur) and efficiency (η). The composition, Pb0.5Sr0.5HfO3produced the best combination ofEB = 5.12 ± 0.5 MV cm−1,Ur = 77 ± 5 J cm−3, and η = 97 ± 2%, well out‐performing PbHfO3and other antiferroelectric oxides.
more »
« less
Temperature‐Dependent Phase Transitions in Hf x Zr 1‐x O 2 Mixed Oxides: Indications of a Proper Ferroelectric Material
Abstract Knowledge about phase transitions in doped HfO2and ZrO2‐based films is crucial for developing future ferroelectric devices. These devices should perform in ambient temperature ranges with no degradation of device performance. Here, the phase transition from the polar orthorhombic to the nonpolar tetragonal phase in thin films is of significant interest. Detailed electrical and structural characterization is performed on 10 nm mixed HfxZr1‐xO2binary oxides with different ZrO2in HfO2and small changes in oxygen content. Both dopant and oxygen content directly impact the phase transition temperature between the polar and nonpolar phase. A first‐order phase transition with thermal hysteresis is observed from the nonpolar to the polar phase with a maximum in the dielectric constant. The observed phase transition temperatures confirm trends as obtained by DFT calculations. Based on the outcome of the measurements, the classification of the ferroelectric material is discussed.
more »
« less
- PAR ID:
- 10370838
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 8
- Issue:
- 9
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The unique nonlinear dielectric properties of antiferroelectric (AFE) oxides are promising for advancements in solid state supercapacitor, actuator, and memory technologies. AFE behavior in high‐k ZrO2is of particular technological interest, but the origin of antiferroelectricity in ZrO2remains questionable. The theory of reversible electric field‐induced phase transitions between the nonpolar P42/nmc tetragonal phase and the polarPca21orthorhombic phase is experimentally tested with local structural and electromechanical characterization of AFE ZrO2thin films. Piezoresponse force microscopy identifies signature evidence of a field‐induced phase transition. A significant size effect in AFE ZrO2is experimentally observed as film thickness is scaled down from 14.7 to 4.3 nm. The size effect is explained by modifications to the phase transition energy barrier heights ranging from 0.6 to 7.6 meV f.u−1depending on crystallite size and in‐plane compressive strain with decreasing ZrO2film thickness. Using the size effect, it is possible to double the energy storage density in ZrO2from 20 J cm−3to greater than 40 J cm−3, thus highlighting a feasible route for superior performance in AFE fluorite supercapacitors.more » « less
-
Abstract Structure and thermodynamics of pure cubic ZrO2and HfO2were studied computationally and experimentally from their tetragonal to cubic transition temperatures (2311 and 2530 °C) to their melting points (2710 and 2800 °C). Computations were performed using automatedab initiomolecular dynamics techniques. High temperature synchrotron X-ray diffraction on laser heated aerodynamically levitated samples provided experimental data on volume change during tetragonal-to-cubic phase transformation (0.55 ± 0.09% for ZrO2and 0.87 ± 0.08% for HfO2), density and thermal expansion. Fusion enthalpies were measured using drop and catch calorimetry on laser heated levitated samples as 55 ± 7 kJ/mol for ZrO2and 61 ± 10 kJ/mol for HfO2, compared with 54 ± 2 and 52 ± 2 kJ/mol from computation. Volumetric thermal expansion for cubic ZrO2and HfO2are similar and reach (4 ± 1)·10−5/K from experiment and (5 ± 1)·10−5/K from computation. An agreement with experiment renders confidence in values obtained exclusively from computation: namely heat capacity of cubic HfO2and ZrO2, volume change on melting, and thermal expansion of the liquid to 3127 °C. Computed oxygen diffusion coefficients indicate that above 2400 °C pure ZrO2is an excellent oxygen conductor, perhaps even better than YSZ.more » « less
-
Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-architectures, and other potential applications. The detailed temperature dependent local structure evolution of BaTiO 3 nanocubes capped with nonpolar oleic acid (OA) and polar tetrafluoroborate (BF 4 − ) ligands are investigated using in situ synchrotron X-ray diffraction and pair distribution function (PDF) analysis, in conjunction with piezoresponse force microscopy (PFM) and 137 Ba nuclear magnetic resonance (NMR) spectroscopy measurements. Diffraction analysis reveals that nanocubes capped by polar BF 4 − ligands undergo sharper ferroelectric to paraelectric phase transitions than nanocubes capped with nonpolar OA ligands, with the smallest ∼12 nm nanocubes displaying no transition. Local non-centrosymmetric symmetry is observed by PDF analysis and confirmed by NMR, persisting across the phase transition temperature. Local distortion analysis, manifested in tetragonality ( c / a ) and Ti off-centering ( z Ti ) parameters, reveals distinct temperature and length-scale dependencies with particle size and capping group. Ferroelectric order is increased by polar BF 4 − ligands, which is corroborated by an enhancement of PFM response.more » « less
-
Advances in creating polar structures in atomic‐layered hafnia‐zirconia (HfxZr1−xO2) films not only augurs extensive growth in studying ferroelectric nanoelectronics and neuromorphic devices, but also spurs opportunities for exploring novel integrated nanoelectromechanical systems (NEMS). Design and implementation of HfxZr1−xO2NEMS transducers necessitates accurate knowledge of elastic and electromechanical properties. Up to now, all experimental approaches for extraction of morphological content, elastic, and electromechanical properties of HfxZr1−xO2are based on solidly mounted structures, highly stressed films, and electroded architectures. Unlike HfxZr1−xO2layers embedded in electronics, NEMS transducers require free‐standing structures with highly contrasted mechanical boundaries and stress profiles. Here, a nanoresonator‐based approach for simultaneous extraction of Young's modulus and residual stress in free‐standing ferroelectric Hf0.5Zr0.5O2films is presented. High quality factor resonance modes of nanomechanical resonators created in predominantly orthorhombic Hf0.5Zr0.5O2films are measured using nondestructive optical transduction. Further, the evolution of morphology during creation of free‐standing Hf0.5Zr0.5O2structures is closely mapped using X‐ray diffraction measurements, clearly showing transformation of ferroelectric orthorhombic to nonpolar monoclinic phase upon stress relaxation. The extracted Young's modulus of 320.0 ± 29.4 GPa and residual stress ofσ = 577.4 ± 24.1 MPa show the closest match with theoretical calculations for orthorhombic Hf0.5Zr0.5O2.more » « less